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Figure 1: We propose OpacifyDepth, a two-stage appearance-normalization pipeline that converts transparent
objects into opaque surrogates, enabling stable monocular depth estimation without retraining depth models.

Abstract

Monocular depth estimation remains fundamentally unreliable for transparent
and reflective objects, where light transmission and specular reflection violate
the appearance assumptions baked into modern depth networks. State-of-the-art
monocular estimators consistently fail to produce stable or meaningful depth pre-
dictions in regions containing glass, mirrors, or glossy materials. In this work,
we present a two-stage solution that converts transparent-object depth estimation
into a standard opaque-surface inference problem. First, we perform appearance
normalization by detecting transparent and reflective regions and replacing their
textures with physically plausible opaque counterparts. Second, we apply an
off-the-shelf monocular depth estimator directly to the modified image without
requiring any model retraining or architectural changes. We implemented mul-
tiple texture–replacement strategies, including semantic-guided matte synthesis
and material-consistent inpainting, and found that they substantially restore depth
stability and boundary sharpness across diverse scenes. Experiments on a hybrid
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rendered–real dataset containing glass, plastic, and metallic objects show consis-
tent improvements over baseline depth estimators, particularly in regions where
transparency previously caused severe distortions. Qualitative evaluations further
demonstrate smoother geometry, reduced boundary artifacts, and significantly im-
proved alignment with ground-truth depth. Our results indicated that appearance
normalization is an effective and generalizable front-end for handling transparent
and reflective objects within existing monocular depth pipelines.

1 Introduction

Monocular depth estimation is a core problem underpinning applications in 3D reconstruction,
robotic manipulation, navigation, scene understanding, and visual content generation [1, 2]. In
settings involving transparent objects, accurate depth inference is particularly important for grasping,
collision avoidance, and precise placement, as well as for stable real-to-simulation pipelines and
automated hyperparameter tuning in robotic workflows [3–5]. While recent monocular depth models
such as MiDaS [6], DPT [7], ZoeDepth [8], Depth Anything V2 [9], and Marigold [10] achieve strong
performance on standard benchmarks, they continue to exhibit systematic failures when applied to
scenes containing transparent or reflective materials.

These failure modes arise from fundamental optical effects. Refraction and light transmission distort
the mapping between observed appearance and underlying geometry, causing background leakage
and spatially inconsistent depth cues [11]. Transparent regions often lack reliable texture and shading
gradients, rendering their surfaces ambiguous under photometric inference. Specular highlights,
reflections, and mixed illumination further confound boundary localization, leading to fragmented
geometry and unstable depth predictions [12–14]. Together, these effects violate the assumptions
under which most monocular depth estimators are trained, making transparent objects a persistent
and well-documented failure case.

Rather than attempting to infer depth directly through transparent media, we reframe the task as an
appearance normalization problem. Our approach decomposes depth estimation into two stages: first,
transparent or reflective regions are identified and their appearance is converted into geometrically
consistent opaque surfaces; second, any off-the-shelf monocular depth estimator is applied to the
resulting image. This decoupling bypasses the physical complexity of light transport in transparent
materials and allows existing depth models to operate under their intended photometric assumptions
without architectural modification or retraining.

To localize regions requiring normalization, we rely on vision–language-guided segmentation to
obtain object-level masks for transparent materials. The subsequent appearance-conversion stage
replaces refractive observations with plausible diffuse textures while preserving object boundaries
and shading continuity. The resulting image maintains the original scene geometry but removes
appearance artifacts that are incompatible with monocular depth inference.

A central challenge in studying transparent-object depth is the lack of suitable training and evaluation
data. Existing datasets are often limited in scale, restricted to a narrow set of object categories, or lack
reliable ground-truth depth. To address these limitations, we construct a synthetic dataset consisting
of three complementary components: paired transparent–opaque object renders with ground-truth
depth, additional multi-object Blender-rendered scenes designed to test generalization beyond the
training distribution, and real photographs of transparent objects captured under natural conditions
without depth supervision. Quantitative evaluation is conducted on a held-out synthetic test split
with ground-truth depth, while qualitative evaluation focuses on both unseen synthetic scenes and
real-world images to assess robustness and in-the-wild behavior.

Across all settings, the proposed preprocessing step consistently improves the depth predictions
produced by existing monocular estimators. On synthetic data, the method yields more coherent
geometry and cleaner object boundaries, while on real images it suppresses background interference
and produces more stable depth within transparent regions.

In summary, our contributions are as follows:

• We introduce a dedicated pipeline for transparent-object depth estimation that reframes
the problem through appearance normalization rather than direct inference on refractive
observations.
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• We propose a material-conversion module that transforms transparent regions into geometry-
preserving opaque surrogates, enabling depth models to operate under well-defined photo-
metric assumptions.

• We demonstrate that the edited images are compatible with a wide range of existing monoc-
ular depth estimators without requiring architectural changes or retraining.

• We construct paired transparent–opaque synthetic data and evaluate the method using
quantitative results on a held-out synthetic test set together with qualitative case studies on
unseen synthetic scenes and real photographs.

2 Related Work

2.1 Monocular Depth Estimation

Monocular depth estimation has seen rapid progress with the adoption of large-scale pretraining and
global reasoning mechanisms. Early CNN-based approaches [15] first demonstrated direct depth
regression from a single image, followed by transformer architectures such as DPT [16] and DINOv2-
derived backbones [17], which improved long-range feature aggregation and depth consistency. More
recent models including ZoeDepth [18], Marigold [19], and Depth Anything V2 [20] have further
incorporated metric-relative fusion, diffusion priors, and large-scale pseudo-labeling to obtain strong
performance across diverse benchmarks.

Despite these advancements, existing monocular depth models consistently fail on transparent objects.
Multiple recent evaluations [21] provide explicit evidence that state-of-the-art foundation models
such as DPT, ZoeDepth, and Depth Anything V2. These models produce highly unstable, distorted,
or background-leaking depth in transparent regions due to refraction-induced appearance–geometry
mismatch. This study demonstrates that transparent surfaces violate the photometric assumptions
under which these models are trained, leading to depth collapse, discontinuities, and incorrect
foreground–background separation.

These findings align with earlier observations in transparent-object geometry literature (e.g., Clear-
Grasp [11]), where refraction and texture scarcity are shown to remove the shading cues necessary
for monocular inference. Together, these results establish transparent materials as a reproducible and
well-documented failure mode for modern monocular depth estimation, motivating approaches that
explicitly modify or normalize appearance before applying depth prediction.‘

2.2 Segmentation

Segmentation plays a central role across a wide range of computer vision tasks, enabling models to
reason about scene structure, object boundaries, and region-specific appearance. As modern systems
increasingly require object-level understanding, access to reliable segmentation masks has become
fundamental. Advances in both semantic segmentation and instance segmentation have made it
possible to obtain accurate masks even for objects with complex geometry or visual ambiguity.

Within the domain of transparent objects, segmentation has received increasing attention. Trans2Seg
[22] proposes a Transformer-based architecture specifically designed to distinguish transparent
materials and introduces the Trans10K dataset for benchmarking. Trans4Trans [23] extends this
direction with a dual-head Transformer tailored for real-world navigation and robotic manipulation.
Beyond segmentation alone, several works incorporate geometric cues: RFTrans [24] estimates
refractive flow to recover surface normals, whereas sensor-based techniques [25] combine refraction
modeling with photometric constraints for transparent-surface reconstruction.

These studies highlight the critical role of segmentation and material-aware processing in perceiving
transparent objects. However, existing approaches often require specialized training, dataset-specific
supervision, or strong geometric priors. Our framework takes a different direction by leveraging
general-purpose vision–language segmentation models. Because our method does not depend on
transparent-object datasets for training, we use them solely for evaluation to assess cross-dataset
generalization.

3



Figure 2: Overview of the OpacifyDepth framework. The image editing network converts transparent regions
into opaque surfaces, enabling monocular depth estimators to produce accurate depth in transparent-object
scenes.

2.3 Image Inpainting and Material Editing

Image inpainting, intrinsic decomposition, and material editing are closely related to our goal
of transforming transparent regions into opaque, geometrically consistent surfaces. Prior work
in material manipulation seeks to disentangle or adjust surface appearance so that images better
reflect physically plausible properties. Careaga et al. [26] decompose images into intrinsic albedo and
shading, reducing ambiguity introduced by complex illumination. Materialist [27] investigates learned
transformations between transparent and opaque materials, enabling controllable edits under different
lighting and viewpoint conditions. More recent diffusion-based approaches such as Alchemist [28]
allow parametric modification of reflectance, roughness, and translucency while maintaining visual
coherence.

Although these studies do not specifically address ambiguity introduced by transparent materials,
they nevertheless motivate the idea that modifying surface appearance can help reduce certain forms
of visual uncertainty. Inspired by this broader perspective, our method applies a geometry-preserving
opaque substitution targeted to transparent regions, producing edited images that better conform to
the visual assumptions underlying standard monocular depth estimators.

3 Method

3.1 Overview

Our method, OpacifyDepth, reformulates the challenge of depth estimation for transparent objects as
an image editing problem. Formally, denote the transparent input image as Itr ∈ RH×W×3, where H
and W are the height and width. The edit region is represented by a binary mask M tr ∈ {0, 1}H×W

where value 1 specifies the transparent object pixels. Our goal is to synthesize an edited image
I ′op from {Itr,M tr}, so that the masked region exhibits opaque appearance while the background
remains unchanged. The edited image is then processed by a frozen monocular depth estimator to
obtain depth predictions.

3.2 Data Construction

Training Dataset Generation. We render paired transparent and opaque images that share identical
geometry, camera pose, and illumination, as illustrated in Fig. 3. Rendering is performed in Blender
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Figure 3: Overview of the datasets used in this work. We include a synthetic training set with paired transparent
and opaque objects, Blender-rendered scenes under controlled conditions, and real-world images of transparent
objects captured in the wild.

with randomized HDR environment maps to increase visual diversity. The transparent view Itr is
generated by varying material parameters including transmission, index of refraction, thickness, and
micro-roughness. The opaque target Iop replaces the transparent material with a uniform metallic
BRDF chosen to preserve clear geometric shading cues. These paired renders provide well defined
supervision for material translation, while also serving as controlled inputs for evaluating depth
inference under matched geometric conditions.

Normalization of 2D Image Crops. To reduce intra-dataset variation and eliminate scale-related
bias, we normalize all object crops to a unified canonical resolution. For each rendered object, we
compute its axis-aligned bounding box and take the longer side as the reference scale. The cropped
region is then resized so that every object has the same normalized extent regardless of its original
physical size or camera distance. This ensures that the editing module receives consistent spatial
statistics across training samples, preventing the network from learning spurious correlations tied to
object scale or framing rather than transparency-specific appearance cues.

Additional Non-Supervised Images. Beyond the paired supervisory dataset, we collect an ad-
ditional set of Blender-rendered multi-object scenes (xxx images) and a set of real photographs
captured in indoor environments (xxx images). These images do not contain ground truth depth but
are used to evaluate robustness and generalization. The multi-object Blender scenes allow testing in
cluttered compositions with complex occlusion patterns, while the real images demonstrate that the
appearance-normalization module produces stable edits on in-the-wild inputs, even when lighting,
textures, or background statistics differ significantly from the training distribution.

3.3 Image Editing Network

The core of our framework is an image editing network designed for opacification. This network
performs a guided inpainting task, leveraging a conditional diffusion model adapted from Paint by
Example [29]. The model operates in the latent space of a pretrained VAE, consisting of an encoder
E and a decoder D. The architecture is designed to integrate two primary sources of information:
spatial context from the background and semantic guidance from the transparent object itself.
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Architectural Components. The network’s central component is a U-Net denoiser. Its design
incorporates the following key elements:

• Multi-Channel Latent Input: To provide explicit spatial context and define the synthe-
sis region, the U-Net takes a 9-channel latent input. This input concatenates the noisy
opaque latent zt, the encoded background from the masked transparent input zbg, and the
downsampled mask M̄ tr:

zinput = [zt, zbg, M̄
tr]. (1)

• Semantic Conditioning: To ensure the synthesized object is semantically consistent with
the original, the network is conditioned on high-level features from the transparent input Itr.
A frozen CLIP image encoder extracts a class token, which is then projected by an MLP
to obtain a conditioning vector c. This vector is injected into the U-Net via cross-attention
layers to guide the generation process.

Training. The network is trained end-to-end using the standard DDPM objective [30]. The objective
is to train the U-Net, ϵθ, to predict the noise added to the clean opaque latent z, conditioned on the
multi-channel input and semantic vector c. During inference, this process is reversed: starting from
a random Gaussian noise latent zT , the model iteratively denoises it to produce the final opacified
latent z0, which is then decoded to the edited image I ′op = D(z0).

3.4 Inference Pipeline

The end-to-end inference pipeline consists of three main stages: pre-processing, core model inference,
and post-processing. First, in the pre-processing stage, inputs are prepared for the editing network.
For a given test image, Grounded-SAM2 generates a segmentation mask for the target transparent
object. A square crop containing the object is then extracted and resized to 512 × 512. Next, the
prepared crop and mask are fed into the trained image editing network for the core inference step,
which produces an opacified crop. This model inference process is illustrated in Fig. 2. Finally, in the
post-processing stage, the generated crop is seamlessly integrated back into the full image to form
the final output. Mask-based blending is applied to preserve background fidelity:

I ′opcrop,blended = M tr ⊙ I ′opcrop + (1−M tr)⊙ Itrcrop. (2)

The blended crop is placed back at its original location, and the resulting image I ′op is fed to a frozen
Depth Anything 3 model for final depth prediction.

4 Experimental Evaluation

This section evaluates the proposed image editing strategy for improving monocular depth estimation
on transparent objects. The experimental setup and evaluation protocol are described first, followed
by quantitative analysis on the rendered test split and qualitative comparisons. Additional controlled
studies and real-world editing attempts are provided in Appendix 7.2.

4.1 Experimental Setup

Rendered dataset. Evaluation is conducted on a Blender-rendered dataset comprising 1530 images,
partitioned into 1500 training samples and 30 test samples. Each test sample provides: (i) a transparent
input image Itr containing transparent objects, (ii) a paired opaque rendering Iop with identical
geometry and camera parameters, (iii) a binary object mask M defining the target region, and (iv) a
reference depth map Dgt obtained from Blender’s Z-pass rendering.

Compared settings. Depth Anything 3 (DA3; depth-anything/DA3NESTED-GIANT-LARGE-1.1)
serves as the depth estimation backbone for settings (i), (ii), and (iv). Four configurations are
compared:

• Transparent baseline: DA3 applied to the transparent input Itr.
• Color-filling baseline: Masked region filled with solid color prior to DA3 inference.
• Depth4ToM [31]: A specialized method for transparent-object depth estimation.
• OpacifyDepth: DA3 applied to the edited image I ′op = Tθ(I

tr, C).

6



Input AdaBins DINOv3 DPT ZoeDepth Marigold
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Anything v2

Figure 4: Qualitative comparison of monocular depth on tabletop scenes. Each row shows one RGB scene (left)
and the corresponding depth predictions from six off-the-shelf baselines: AdaBins, DINOv3, DPT, ZoeDepth,
Marigold, and Depth Anything V2. The rows are curated to stress common tabletop failure modes such as
fine-scale geometry, transparent materials, pictorial 3D, and strong cast shadows.

Setting RMSE ↓ MAE ↓ AbsRel ↓
Transparent baseline 0.8992 0.8398 0.5155
Color-filling baseline 0.9756 0.8989 0.5798
Depth4ToM [31] 1.0880 0.9721 0.8911
OpacifyDepth 0.8499 0.7823 0.3960

Table 1: Masked-region depth evaluation on the 30-image rendered test set. Lower values indicate better
performance (↓).

4.2 Quantitative Analysis

Evaluation protocol. To quantitatively evaluate performance, three standard depth estimation
metrics are computed exclusively within the target region specified by the binary mask M : Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and Absolute Relative Error (AbsRel). To
enable fair comparison with Depth4ToM [31], which produces affine-invariant predictions, a single
global scale-and-shift alignment (s, t) is estimated via least squares over all masked pixels. The
metrics for Depth4ToM are then computed using the aligned prediction.

Table 1 reports masked-region depth errors on the 30-image test split. OpacifyDepth achieves the
lowest error across all three metrics and improves upon the transparent baseline. The color-filling
baseline underperforms the transparent baseline on this test set. Depth4ToM yields higher errors
under the global affine alignment protocol.
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Transparent Input Mask Color-Filled Edited Image

Transparent Baseline Depth4ToM Color-Filling Baseline OpacifyDepth

Figure 5: Qualitative comparison across evaluated settings. Top: transparent input, object mask, color-filled
input, and edited image. Bottom: depth predictions from Transparent Baseline, Depth4ToM, Color-Filling
Baseline, and OpacifyDepth.

4.3 Qualitative Analysis

Off-the-shelf Baseline Comparison. To evaluate how existing models handle transparency, the
performance of six off-the-shelf monocular depth baselines is evaluated on complex, real-world
tabletop scenes. The results are presented in Figure 4. The visualization reveals a common failure
mode: most estimators fail on transparent surfaces, resulting in "see-through" artifacts. A notable
exception is Marigold, which shows some resilience to transparency but introduces geometric
inaccuracies in opaque regions of the scene. This finding indicates that transparency remains a
significant challenge for current state-of-the-art models.

Comparison across compared settings. A direct comparison of the four compared settings is
conducted on samples from the rendered test set, as shown in Figure 5. The transparent baseline
exhibits a prominent see-through artifact, where the depth estimator fails to perceive the glass as a
solid surface and instead assigns it the depth of the background. The color-filling baseline produces
a noticeably noisier depth map in this example, which may be attributed to the sparse surrounding
context and a potential domain mismatch. While the Depth4ToM method successfully mitigates the
see-through issue, its predicted object boundaries do not align perfectly with the object’s silhouette.
In contrast, OpacifyDepth not only resolves the see-through problem but also yields object boundaries
that are more accurately aligned. This demonstrates that the proposed appearance normalization
is a valid strategy, enabling a frozen depth estimator to achieve leading performance without any
fine-tuning.

Generalization to Complex Scenes. The generalization of OpacifyDepth is evaluated on complex
rendered scenes with multiple transparent objects, which are not part of the test set. Figure 6 visualizes
the results. The transparent baseline exhibits see-through artifacts within the masked regions (red
boxes), assigning background depth to transparent surfaces. The normalized masked-region depth
reveals the depth inconsistencies. OpacifyDepth resolves the see-through artifacts and produces
consistent depth estimates within the masked regions, indicating that the method can generalize to
more complex scenes and still outperform the baseline.
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Figure 6: From left to right - Top: transparent input Itr , object masks (Mask 1 and Mask 2), and edited image
I ′op generated by the image editing network. Bottom: depth by Depth Anything 3 on transparent input, depth by
Depth Anything 3 on edited image, normalized masked-region depth from transparent input, and normalized
masked-region depth from edited image. Red boxes highlight the left transparent object where the transparent
baseline exhibits see-through artifacts.

5 Conclusion

This study examined how current state-of-the-art monocular depth estimators behave in the presence
of transparent objects. Through preliminary experiments and an analysis of existing datasets and
models, we identified a consistent failure pattern: transparent regions cause depth collapse, unstable
boundary predictions, and background leakage across multiple architectures. These observations
indicated that the dominant source of error is not geometric complexity or clutter, but the optical
ambiguities introduced by refraction and transmission.

The experimental findings further showed that even under controlled synthetic conditions, where
geometry, illumination, and noise are eliminated, transparent objects remain a systematic failure
mode. Combined with an assessment of transparent-object benchmarks, we found that many available
datasets rely heavily on synthetic repetition and limited shape diversity, constraining generalization
to real-world materials and optical properties.

Overall, the study supports two key conclusions. First, transparent objects represent a reproducible and
architecture-independent failure case for modern monocular depth estimation methods, consistently
degrading depth quality across different model families. Second, these failures are closely tied
to biased data distributions and a fundamental mismatch between appearance and geometry in
transparent regions, which together limit generalization and motivate a shift away from direct depth
regression toward appearance-normalization-based solutions.

6 Discussion

This project was initially motivated by the importance of depth estimation across a wide range of
computer vision and robotics applications, including 3D reconstruction, manipulation, and scene
understanding. Over the project, we deliberately chose to explore a perception problem beyond
large language models in order to engage with visual reasoning and geometry-driven challenges.
At the outset of the project, the primary difficulty was expected to be depth estimation in cluttered
tabletop scenes with complex object interactions. Instead, preliminary experiments revealed that
state-of-the-art monocular depth estimators handled clutter and occlusion reliably, while transparent
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objects consistently produced the most severe errors. This contrast reshaped the research direction
from one centered on geometric complexity to one dominated by optical ambiguity. Appendix 7.1
provides a detailed account of this transition and the initial framework that motivated the shift.

Building on this revised understanding, our analysis examined the persistent challenges that trans-
parent objects pose for modern monocular depth estimators. Across baseline models, transparent
materials consistently disrupted the appearance and geometry relationship assumed by monocular
prediction, producing depth collapse, boundary distortion, and background leakage. The consistency
of these failure modes across synthetic renders, real images, and multiple architectures suggests that
the limitation is fundamental rather than specific to a particular model design or training strategy.

Early attempts to address these issues focused on post-hoc depth refinement by integrating semantic
reasoning and geometric priors. Although this initial framework provided a principled way to
incorporate boundary constraints, occlusion handling, and confidence modeling, it encompassed
several research-level subproblems that each required dedicated solutions. In practice, preliminary
experiments showed that simple gradient-based edge alignment was unreliable, as image edges
frequently diverged from true geometric discontinuities. Developing a unified model capable of
robustly resolving boundary refinement, occlusion recovery, and confidence estimation proved
computationally expensive and theoretically unstable within the scope of this project.

As a result, the research scope was narrowed to a more tractable but still challenging domain:
transparent objects. These objects represent a dominant failure mode for monocular depth estimation
due to refraction and transmission ambiguities. Rather than continuing to correct depth predictions
after inference, the problem was reframed as one of input preprocessing, emphasizing that the root
cause of failure lies in RGB appearance rather than in the depth regression process itself. This
shift led to the current appearance-normalization and material-replacement framework described in
Section 3, which translates transparent appearances into opaque counterparts prior to depth inference.

Motivated by these observations, the proposed framework replaces refractive transparent regions with
geometrically consistent opaque surrogates, producing inputs that better conform to the inductive
biases of existing monocular depth estimators. By keeping the downstream depth models frozen, the
approach remains modular and compatible with a broad class of architectures, allowing improvements
without retraining or architectural modification.

6.1 Future Work

Future work will focus on completing quantitative evaluation on public transparent-object benchmarks
and validating the approach under real-world lighting conditions, material variation, and scene
complexity. An important direction is to analyze how optical factors such as refractive index, object
thickness, and internal reflections influence the effectiveness of appearance normalization. Another
priority is strengthening the material replacement model to ensure faithful and geometry-preserving
transformations across a broader range of transparent objects.

Longer-term extensions include integrating the preprocessing module into robotic perception and
3D reconstruction pipelines, evaluating cross-model consistency among different monocular depth
estimators, and exploring transparency-aware data augmentation strategies. Together, these directions
aim to clarify whether the observed limitations arise primarily from architectural constraints or from
biased training distributions that dominate current monocular depth pipelines.
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7 Appendix

7.1 Initial Framework and Scope Transition

7.1.1 Overview of the Initial Framework

The early investigation formulated tabletop depth refinement as a single-image, depth-to-depth
learning problem. Given an RGB image I ∈ RH×W×3 without known intrinsics, the objective was
to predict a refined depth map D̂ ∈ RH×W that corrects structural artifacts and stabilizes scale. The
pipeline was designed in two stages: (i) pseudo ground-truth construction and (ii) transformer-based
depth refinement.
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7.1.2 Stage 1: Pseudo Ground-Truth Construction

Stage 1 aimed to synthesize a high-quality pseudo ground truth D⋆ and a per-pixel confidence map
C ∈ [0, 1]H×W for supervision, together with instance masks {Mk}Kk=1. Semantic guidance was
provided by a vision–language model (VLM). The VLM produced a structured scene description
including object categories, materials, coarse locations, and semantic flags (e.g., mirrors, screens,
transparent surfaces). This semantic pass identified unreliable regions for geometric supervision
and suggested geometry priors such as planar, piecewise planar, cylindrical, spherical, or thin-plate
surfaces to regularize local fitting.

Instance proposals were generated by a text-conditioned detector and refined into clean masks. Low-
confidence or semantically inconsistent proposals were filtered using text–image similarity checks.
Each accepted mask was morphologically cleaned, and a signed-distance transform defined inner and
outer boundary bands for localized boundary operations.

Two complementary monocular predictors provided initial depth estimates. After log-depth normal-
ization to [0, 1], a fused depth D(0) was formed by per-pixel weighting that preferred sharper edges
where predictors disagreed, while a variance map V captured local disagreement. Boundary fattening
and occlusion ambiguities were mitigated using band-limited, edge-aware filtering guided by image
gradients. Across mask boundaries, plausible near–far depth transitions were enforced, preferring the
lower-variance hypothesis.

Within each instance Mk, the semantically suggested geometry was fitted by robust estimation (e.g.,
RANSAC). Residuals Rk = D(0) −Dmodel

k were denoised using instance-restricted total variation or
anisotropic diffusion to preserve thin ridges. Small instances were temporarily upsampled to prevent
oversmoothing, and missing regions were filled by in-instance interpolation or Poisson/Laplacian
inpainting with ridge preservation. At the scene level, instance reconstructions were fused, resolving
overlaps via residual and variance comparisons. When a tabletop plane was detected, planar support
and non-penetration constraints were applied at contact bands, followed by edge-aware harmonization
near seams.

The confidence map combined geometric residuals, boundary proximity, estimator variance, hole-fill
ratios, and semantic uncertainty. For pixel x,

C(x) = σ(−αr(x) + βd(x)− γv(x)− δh(x)− ηs(x)) , (3)

and C(x) = 0 in ignored regions. Quality checks on boundary thickness, contact consistency, and
abnormal residual variance triggered local fallbacks when inconsistencies were detected. The outputs
of Stage 1 were (D⋆, C, {Mk}) and corresponding semantics.

7.1.3 Stage 2: Transformer-Based Depth Refinement

Stage 2 trained a compact transformer fϕ that refined noisy depth maps from arbitrary monocular
estimators. The mapping fϕ : RH×W →RH×W produced D̂ = fϕ(D) to approximate D⋆. The
architecture was an encoder–decoder transformer operating on non-overlapping p × p patches in
log-depth space. Each patch was flattened, linearly projected into a token, and augmented with 2D
sine positional encodings. The backbone consisted of L layers of windowed multi-head self-attention
with periodic global tokens to propagate long-range context for consistent scale and symmetry. An
optional instance raster and distance-to-edge map could be concatenated to the embeddings. A
convolutional head predicted a residual R in log-depth, yielding D̂ = D+R, which preserved coarse
geometry while emphasizing boundary corrections.

The loss function balanced scale-invariant depth fidelity, edge sharpness, and surface normal align-
ment:

ℓ(x) = λsiℓSILog
(
D̂(x), D⋆(x)

)
+ λ∇∥∇D̂(x)−∇D⋆(x)∥1 + λn(1− ⟨n̂(x), n⋆(x)⟩) , (4)

and the global objective was

L =
∑
x

w(x) ℓ(x), w(x) = C(x) b(x) sk(x). (5)

Here b(x) emphasized boundary bands to enforce crisp discontinuities, while sk = 1/
√

area(Mk)
compensated for bias against small objects. Standard photometric and geometric augmentations were
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(a) Comparison between Modest and Depth4ToM on real-world transparent-object scenes.
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(b) Synthetic Blender experiment demonstrating material replacement effects on depth prediction.

Figure 7: (a) Modest often produces inconsistent depth boundaries and can neglect distant opaque objects, while
Depth4ToM yields more continuous backgrounds but may exhibit discontinuities at mixed-material junctions. (b)
In controlled Blender experiments, transparent glass objects result in blurred boundaries and distorted internal
gradients in depth predictions, while replacing transparent materials with opaque metallic materials yields
sharper boundaries and more spatially coherent geometry. Mask boundaries are shown in red.

applied during pseudo-label generation, and mild perturbations in depth space improved robustness
to upstream estimator noise.

At inference, the transformer accepted a single noisy depth map and produced a refined map in
one forward pass, requiring no intrinsics, semantics, or masks. This design yielded sharper bound-
aries, stable global scale, and accurate small-object reconstruction, functioning as a plug-and-play
refinement module for generic monocular depth predictors.

7.1.4 Scope Transition and Motivation for the Current Work

Although the above framework effectively integrated semantic reasoning and geometric priors, it
encompassed several research-level subproblems—boundary refinement, occlusion recovery, and
confidence modeling as each requiring dedicated solutions. Preliminary experiments showed that
simple gradient-based edge alignment was unreliable, as image edges often diverge from true geomet-
ric discontinuities. Developing a unified model to robustly handle all these cases was computationally
expensive and theoretically unstable.

The research scope was therefore narrowed to a more tractable but still challenging domain: trans-
parent objects. These represent a dominant failure mode for monocular estimators due to refraction
and transmission ambiguities. The problem was reframed from post-hoc depth correction to input
preprocessing, emphasizing that the root cause lies in RGB appearance rather than in depth regression
itself. This shift led to the current material-replacement framework described in Section 3, which
translates transparent appearances into opaque counterparts before depth inference.

7.2 Additional Analyses

Qualitative Evaluation of Baseline Monocular Depth Estimation Models on Challenging Scenes
The qualitative evaluation was conducted on self-collected real-world tabletop scenes containing a
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Figure 8: Comparison of real-world transparency-to-opaque editing results. Top: original image; middle: mask-
filling, two Nanobanana edits generated with different prompts, and a ControlNet edit; bottom: corresponding
depth predictions. Depth maps are normalized within transparent-object masks, with mask boundaries highlighted
in red.

diverse mix of transparent, opaque, reflective, and cluttered objects, representing a broad range of
challenging optical and geometric conditions.

As shown in Figure 4, the qualitative assessment reveals a clear performance hierarchy and common
failure modes. The CNN-based AdaBins performs the weakest, producing severely blurred contours.
Foundation models such as DINOv3 yield smooth reconstructions but tend to be overly flat. The
Transformer-based DPT and ZoeDepth produce more coherent results, with DPT excelling at local
details while ZoeDepth offers better global consistency. The Stable Diffusion-based generative model,
Marigold, provides highly detailed depth maps and handles transparent regions more reasonably than
other models, but can introduce geometric hallucinations such as disproportionate object scaling or
missing small objects. Depth Anything V2 consistently delivers state-of-the-art performance in terms
of detail and sharpness on non-transparent objects but sometimes fails on transparent or reflective
regions.

These findings indicated that all tested models still struggle with fine-scale geometry, and transparent
surfaces, motivating the development of our proposed image editing framework.

Evaluation of Specialized Methods for Transparent-Object Depth Estimation The Modest
model exemplifies a co-training approach, jointly predicting depth and segmentation in an end-to-end
framework. Its architecture uses a visual encoder and an iterative fusion decoder, where semantic and
geometric features are progressively refined through shared-weight gates to allow the two tasks to
mutually inform each other.

In our experiments, both official pre-trained versions of the model showed limited generalization on
diverse real-world scenes, producing generally inaccurate depth boundaries. The model trained on the
purely synthetic dataset performed slightly better, suggesting that the co-training strategy may cause
the model to over-focus on transparent objects and their immediate surroundings, at the expense of
ignoring non-transparent objects located further away in the scene.

The Depth4Tom model utilizes a monocular distillation pipeline. It first in-paints transparent regions,
identified by a mask, with random uniform colors. These augmented images are then processed by a
pre-trained depth network to generate pseudo-labeled “virtual depths,” which are used to fine-tune
the network itself.

Experimental results show that the model’s output tends to assign background depth values to trans-
parent surfaces such as windows. For objects composed of mixed materials, such as a glass kettle with
an opaque base, a depth discontinuity was observed at material junctions. The method’s performance
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is sensitive to mask accuracy; segmentation errors lead to artifacts at the depth boundaries, producing
unnatural transitions between the edited region and its surroundings.

Analysis of Image Editing on Synthetic Data. Controlled experiments were conducted in a
Blender synthetic environment under a fixed HDR environment map and identical camera settings.
With the transparent glass material, Depth Anything V2 produced inaccurate depth predictions,
exhibiting blurred boundaries and distorted internal gradients. After replacing the material with an
opaque metallic one, the predicted depth maps became substantially more accurate and spatially
coherent across the entire object region. Depth values inside masks were normalized for visualization.
These results support the hypothesis that optical ambiguity is the primary challenge in transparent-
object depth estimation, and that converting the material to opaque yields clearer depth cues.

Image Editing Attempts on Real-World Scenes. Self-collected images containing transparent
objects were used to explore image-level material replacement. Two approaches were examined:
mask-filling and diffusion-based generative editing.

Mask-filling resolves the “see-through” depth issue but eliminates internal geometric cues, and its
success is tightly coupled to mask accuracy. Diffusion-based editing (nanobanana, ControlNet)
demonstrates inconsistent behavior: sometimes modifying regions outside the mask or failing to alter
the transparent region at all. This suggests that general-purpose diffusion models lack a strong notion
of transparency, motivating the development of a specialized editing module.
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