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Figure 1: Qualitative comparison of monocular depth on tabletop scenes. Each row shows one RGB scene (left)
and the corresponding depth predictions from six off-the-shelf baselines: AdaBins, DINOv3, DPT, ZoeDepth,
Marigold, and Depth Anything v2. The rows are curated to stress common tabletop failure modes such as
fine-scale geometry, transparent materials, pictorial 3D, and strong cast shadows.
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Abstract

Monocular depth estimation continues to struggle with transparent and reflective
objects, where light transmission and specular reflection violate the photometric
assumptions used by current models. Existing state-of-the-art (SOTA) estimators
have failed to produce stable or meaningful depth in regions containing glass,
mirrors, or glossy materials. We propose to decouple this problem into two stages:
(1) appearance normalization, where transparent and reflective regions are identified
and their textures are replaced with physically plausible opaque counterparts, and
(2) standard depth inference, where any existing monocular depth estimator can be
directly applied to the modified image. This simple yet effective strategy converts
the intractable problem of transparent-object depth estimation into a standard
opaque-surface inference task without retraining or modifying SOTA models. We
explore multiple texture replacement strategies, including semantic-guided matte
synthesis and material-consistent inpainting, and demonstrate that they restore
depth consistency and boundary sharpness across diverse scenes. Experiments on a
hybrid dataset of rendered and real images containing glass, plastic, and metallic
objects show that our preprocessing module improves by large margins when paired
with existing monocular estimators. Qualitative results further reveal smoother
geometry, reduced boundary artifacts, and improved alignment with ground-truth
depth. Our method provides a generalizable front-end for transparent and reflective
object handling, turning previously unreliable regions into tractable inputs for
off-the-shelf depth models.

1 Introduction

Monocular depth estimation is a fundamental task supporting downstream applications such as
three-dimensional (3D) reconstruction, navigation, scene understanding, and visual content creation
[} 2]. In scenes that include transparent objects, accurate depth estimation is critical for robotic
grasping, collision avoidance, and precise placement, as well as for stable real-to-sim pipelines and
automated hyperparameter tuning [3H5]]. Recent monocular depth estimators, including MiDaS [6]],
DPT [7], ZoeDepth [8], Depth Anything V2 [9], and Marigold [10], achieve strong performance on
standard benchmarks and opaque-object scenes.

Despite this rapid progress in large-scale monocular foundation models, transparent objects remain a
persistent failure case. Their optical properties disrupt the physical mapping between appearance
and geometry through several recurring mechanisms. First, refraction and light transmission cause
rays to bend or mix with the background, producing locally inconsistent depth cues and background
leakage [11]. Second, texture scarcity eliminates shading gradients, making transparent regions
visually homogeneous and uninformative. Third, specular highlights and cast shadows further
confuse boundary localization and introduce spurious depth responses [12-H14]. Together, these
effects amplify the ill-posedness of monocular depth estimation on transparent objects and highlight
the need to explicitly address material-dependent ambiguity.

Instead of directly estimating depth through transparent media, the problem can be reformulated as a
standard opaque-surface estimation task by first altering the object’s appearance. Transparent-object
depth estimation can be decomposed into two sub-problems: (1) a texture-replacement stage, in
which transparent regions are detected and converted into opaque surrogates with synthesized diffuse
textures that maintain geometric fidelity; and (2) a depth-estimation stage, in which any pre-trained
monocular depth model, such as MiDaS [6], ZoeDepth [8], Depth Anything V2 [9], or Marigold [10],
is applied directly to the modified image. This decoupling bypasses the intrinsic ambiguity of light
transmission and enables off-the-shelf estimators to recover depth as if the transparent object were
opaque.

To detect transparent regions, the pipeline leverages vision—language-guided segmentation models
such as the Segment Anything Model (SAM) [[15], GLIP [16], and GroundingDINO [17]] for text-
prompt-based material localization. A semantic-aware texture-replacement module is then applied to
preserve object contours and lighting consistency while masking out refractive effects. The resulting
appearance-normalized image retains the geometry of the original scene but conforms to the visual
assumptions of existing monocular estimators. Evaluations on both real and synthetic datasets of



transparent objects, including ClearPose [18]], ClearGrasp [11], and Trans10K [19], demonstrate
consistent improvements in d-accuracy and SILog across multiple state-of-the-art depth models,
restoring fine-scale geometry and reducing background leakage.

By separating optical appearance modeling from geometric inference, the proposed approach provides
a modular and generalizable front-end that enables existing monocular depth estimators to perform
robustly on transparent objects without retraining or architectural modification.

The main contributions can be summarized as follows:

* Transparent-object depth estimation is reformulated as an appearance-normalization problem,
introducing a two-stage framework that first replaces transparent textures with plausible
opaque surrogates and then applies standard monocular depth estimation.

* A vision-language-guided material segmentation and texture-replacement pipeline is devel-
oped to preserve geometry while eliminating refractive ambiguity.

» Experimental results demonstrate that the proposed preprocessing improves the accuracy
and stability of existing monocular depth estimators on transparent-object benchmarks such
as ClearPose, ClearGrasp, and Trans10K.

2 Related Work

2.1 Monocular Depth Estimation

Depth estimation has been extensively studied due to its central role in reconstructing spatial structure
and enabling numerous downstream applications such as 3D bounding box generation, robotic
navigation, and object manipulation. The most accurate depth can be captured directly using high-
performance sensors, yet in many scenarios it is desirable to infer depth from 2D monocular images.
Accordingly, monocular depth estimation has evolved from early CNN-based models [20] to recent
transformer-based architectures such as DPT [21] and DINOv2 [22]. These global models achieve
strong benchmark performance but often yield coarse depth in cluttered scenes, particularly where
objects are small, textureless, or self-occluded. In parallel, foundation models for segmentation
such as the Segment Anything Model (SAM) [23] have demonstrated strong generalization for
mask generation across domains. Together, these advances highlight the potential of combining
segmentation and depth estimation, yet few methods directly exploit segmentation for object-level
depth refinement.

Several representative depth models illustrate the evolution and current limitations of the field.
AdaBins [24] extended CNNs by learning adaptive depth bins per image for metric estimation.
Transformer-based approaches such as DPT [21]] and ZoeDepth [25] subsequently improved depth
consistency by leveraging ViT backbones. DPT reconstructs dense regression from patch embeddings,
while ZoeDepth fuses relative and metric estimations through a specialized scaling head. Self-
supervised foundation models like DINOv3 [26] demonstrated that strong depth representations
can be extracted with minimal supervision. Generative models such as Marigold [27] repurpose
diffusion frameworks for high-fidelity depth synthesis, and Depth Anything V2 (DAv2) [28]] combines
DINOV?2 features with large-scale pseudo-labeling, achieving state-of-the-art results on NYU-D with
an AbsRel of 0.056 and a §; accuracy of 98.4%.

Despite this steady progression, common limitations persist. CNN-based models tend to oversmooth
edges, while transformer-based ones improve global consistency but lose fine-grained geometry.
Generative and foundation methods produce sharper details, yet all remain unreliable for transparent
regions, motivating the reformulation of the task as an appearance normalization problem.

2.2 Segmentation

As the input to monocular depth estimation is a single 2D image or videos which is a sequence of
images, and the present work focuses on object-specific rather than full-scene prediction, segmentation
serves as an essential intermediate step to localize individual items. Given recent progress in
segmentation models, masks for transparent or complex objects can now be generated automatically.
Current segmentation approaches can be broadly categorized into (i) semantic segmentation, which



assigns each pixel to a class label, and (ii) instance segmentation, which isolates distinct object
boundaries.

Recent work has explored segmentation and surface estimation for transparent objects. Trans2Seg
[29] introduces a Transformer-based segmentation architecture and the Trans10K-v2 [19] dataset,
achieving improved performance on transparent-object segmentation compared to CNN-based prede-
cessors. Building upon this direction, Trans4Trans [30] proposes a dual-head Transformer architecture
tailored for real-world navigation and manipulation contexts involving transparent materials. In
addition to segmentation, other studies have addressed the estimation of surface geometry. RFTrans
[31] models refractive flow through transparent objects to infer surface normals and support robotic
manipulation. Similarly, a sensor-based method [32] estimates surface normals by combining refrac-
tion modeling with photometric cues. Together, these works highlight the importance of combining
segmentation and material-aware processing to perceive transparent objects reliably.

2.3 Image Inpainting and Material Editing

Research on image decomposition, material editing, and texture synthesis also contributes to resolving
optical ambiguity in scenes with transparent objects. Colorful Diffuse Intrinsic Image Decomposition
in the Wild [33] separates an image into albedo, diffuse shading, and specular components, mitigating
illumination artifacts under complex lighting conditions. Materialist [34] explores learning-based
texture transformation between transparent and opaque materials to enhance realism and relighting
control. Alchemist [35] employs diffusion models for parametric editing of material properties,
allowing controlled manipulation of reflectance, roughness, and translucency in 2D imagery. These
approaches suggest that intrinsic decomposition and generative material editing can serve as effective
preprocessing steps to improve depth estimation for transparent objects.

3 Method

3.1 Overview

We present OpacifyDepth, a monocular depth estimation framework designed for scenes containing
transparent objects. The proposed framework performs image editing as a preprocessing stage before
depth inference. A diffusion-based image-to-image translation network 7Ty converts transparent
regions into geometrically consistent opaque surfaces, producing a modified image I'°? = Ty (I'", C),
where I'" € R¥*Wx3 s the transparent RGB input and I'? € R¥*W X3 is the edited opaque result,
that existing monocular estimators can interpret under Lambertian assumptions. A detailed description
of the earlier two-stage refinement approach and the motivation for this scope transition is provided

in Section[6.1] Appendix.

3.2 Data Construction

Synthetic Pair Generation. Training relies on paired synthetic images of identical geometry,
camera, and lighting. Each pair consists of a transparent version I'” and an opaque-metallic version
I°P, where I'", I°P ¢ RHXW X3 All assets are rendered in Blender with random HDR environment
maps. The transparent variant randomizes transmission, effective thickness, and refraction parameters,
while the opaque target applies a uniform metallic BSDF, forming a stable target domain.

Mask Generation and Augmentation. Two masks are rendered for each sample. The object
mask M € {0,1}7%W covers the entire spatial extent of a transparent object, including both
transparent and opaque parts, and is used to preserve geometric continuity. The transparent-region
mask M € {0,1}1>W gpecifies only the pixels where the material translation should occur,
typically corresponding to transparent regions within M/°%/. Irregular solid occlusion blocks are
inserted inside M°% to simulate mixed materials. Boundary perturbations are applied to M*" to
mimic segmentation noise, promoting robustness to imperfect masks.

Sample Assembly. The masked input is I'" = I'" © M*", where [*" € RIXWx3 \ptr ¢
{0,1}7>W "and © denotes elementwise multiplication. A bounding box B = BBox(M°%) is
computed, and images are cropped and resized as

It = %(jtr)7 Mt = 'TB(M”), Jor — 7;3(]0;))’



where Ti(-) denotes cropping and resizing by the bounding box 5. The resulting triplets
(I'", M, I°P) constitute the paired training data for the image editing module introduced later
in Section [3.3] where I*" and M®" serve as inputs and I°? provides the ground-truth supervision
target.

3.3 Image Editing Module

Architecture. The network follows the ControlNet architecture built on Stable Diffusion 1.5. The
U-Net backbone receives the latent of I*" and a spatial conditioning map M*". A project-specific
trigger token in the text prompt anchors the concept of opaque metallic replacement. Only ControlNet
parameters are fine-tuned, while base weights remain frozen.

ControlNet. ControlNet [36] is a neural network architecture designed to add spatially localized
conditioning to large pretrained diffusion models such as Stable Diffusion. The key idea is to
introduce an additional, trainable branch that receives external conditions (e.g., edges, depth, masks)
while keeping the original diffusion backbone frozen. Formally, let F'(z; ©) denote a neural block
in the pretrained network that maps an input feature map x € R"*%“*¢ to y = F(z; ©). ControlNet
duplicates this block into a trainable copy F'(x; ©.) and connects the two through zero-convolution
layers Z(+;0.1) and Z(+; ©,2):

Yo = F(2;0) + Z(F(x + Z(¢;0:1); Oc); 022)

where c represents the spatial conditioning feature. The zero-convolution layers are 1x 1 convolutions
initialized with all weights and biases set to zero, ensuring that the added branch has no influence at
the beginning of training (y. = y). As learning proceeds, the trainable copy adapts to encode the
conditioning signal ¢ while the frozen backbone preserves the original generative prior. When applied
to diffusion models, this mechanism enables precise, spatially controllable generation by injecting
conditional cues into intermediate feature maps without destabilizing pretrained weights.

Training objective. Let E(-) and G(-) denote the VAE encoder and decoder. For latent z =
E(I'"), noise € ~ N(0,I), and schedule parameters o, ¢, z: = azz + ore. The model predicts
g2, t, E(I'"), M*"), and optimization minimizes

L= ]Effrjop,l\?ltr,t,e [HE - 69(2t7t7 E(jtr)7 Mtr)Hg} : ey

The target is the opaque version 1°P reconstructed through G(-). Deterministic DDIM sampling is
adopted for inference stability.

Inference pipeline. For a real transparent image I'", a transparent-object segmentation model
produces masks M°% and M*". The masked input is I'" = I*" © M'". A bounding box B =
BBox(M°%) is used to crop and resize the masked image and mask as I'" = Tz(I'") and M'" =
Ts(M'™), where T5(-) denotes cropping and resizing by the bounding box B. The edited image is
then generated as I’? = Ty(I'", M'"), and pasted back to the original coordinates using [P =
Tg ' (I'°P), where T; ' (-) denotes the inverse paste operation. Finally, a frozen depth estimator

F : RTXWX3 L REXW produces the final prediction D = F(I'°P).

3.4 Potential Obstacles and Challenges

While the proposed preprocessing framework improves depth estimation for transparent objects,
several limitations remain. First, the model is trained on synthetic data, and a sim-to-real domain gap
may exist due to discrepancies between rendered and real-world image distributions, such as material
appearance, illumination, and background complexity.

Second, diffusion-based editing does not guarantee physical consistency: generated opaque regions
may slightly alter fine geometry or boundary alignment. As observed in other diffusion-based material
editing studies, the model may yield perceptually plausible but physically inconsistent results, such as
minor shape shifts or unrealistic reflectance patterns. However, this effect is confined to the masked
transparent areas, since the network operates only within M*". As a result, any residual inconsistency
remains spatially limited and visually minor, while still producing significantly more coherent and
interpretable depth cues than the original refractive appearance.



Finally, the pipeline depends on segmentation accuracy; severe mask errors can propagate visual
artifacts or incomplete image editing. Future work may explore physically grounded constraints and
joint training with depth supervision to further improve structural consistency.

4 Experimental Evaluation

This section presents a systematic experimental analysis of monocular depth estimation in scenes
containing transparent objects, and an initial exploration of the proposed image editing strategy. The
evaluation includes: (i) baseline depth estimation models performance on challenging scenes; (ii)
analysis of specialized methods for transparent object depth estimation; and (iii) exploratory studies
on image editing under both synthetic and real-world conditions.

4.1 Experimental Setup

Implementation Details All inferences were performed using official pre-trained checkpoints in
their recommended environments. The Modest model was evaluated with weights trained on the
Syn-TODD and ClearPose datasets [37], and the Depth4Tom model was evaluated using its official
fine-tuned variant based on DPT-Large [38]. For image editing experiments, synthetic data were
generated in Blender by replacing transparent BSDF nodes with metallic ones under controlled
lighting. For real-world scenes, object masks were obtained by combining GPT-generated object
prompts with Grounded SAM2. In the mask-filling experiment, object regions were filled with solid
black before inference using Depth Anything V2.

Baseline The baseline evaluation includes representative monocular depth estimation models:
AdaBins, DINOv3, DPT, ZoeDepth, Marigold, and Depth Anything V2. Depth Anything V2 was
further used in the image editing experiments as the base model for analysis.

4.2 Quantitative Evaluation.

Datasets. Quantitative evaluation is conducted on three public transparent-object benchmarks
covering synthetic, hybrid, and real domains. Syn-TODD [39] contains 1,996 synthetic tabletop
scenes with 7,010 transparent and 9,012 opaque ShapeNet objects rendered under over 1,000 HDRI
environments. It provides ground-truth depth, normals, masks, and 6D poses for controlled evaluation.
ClearPose [40] includes 354,481 RGB-D frames from 51 real scenes with 63 transparent objects.
Ground-truth geometry is obtained by aligning CAD models through a SLAM-based multi-view
reconstruction pipeline. TransCG [41] contains 57,715 real RGB-D images across 130 robotic-
captured scenes featuring 51 transparent or reflective objects, annotated with refined depth, normals,
and 6D poses. Together, these benchmarks span synthetic, hybrid, and real domains, providing
reliable ground-truth supervision for quantitative evaluation of transparent-object depth estimation.

Metrics. Standard depth-estimation metrics are used, including Absolute Relative Error (AbsRel),
Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE):

m = 157 2 m(D(e). D (@),

where 2 denotes the valid pixel set within the evaluation mask. For transparent-object assessment,
metrics are computed on ;. = {z | M (x) = 1}, where M'" is the transparent-object mask.
Quantitative evaluation will be conducted on the three benchmarks using both the original and the
material-replaced images once the proposed pipeline is finalized.

4.3 Evaluation of Baseline Monocular Depth Estimation Models on Challenging Scenes

Quantitative Evaluation. Quantitative evaluation will be conducted using the datasets and metrics
described in Section[4.1] once benchmark testing is completed.

Qualitative Evaluation. The qualitative evaluation was conducted on self-collected real-world
tabletop scenes containing a diverse mix of transparent, opaque, reflective, and cluttered objects,
representing a broad range of challenging optical and geometric conditions.



As shown in Figure[T] the qualitative assessment reveals a clear performance hierarchy and common
failure modes. The CNN-based AdaBins performs the weakest, producing severely blurred contours.
Foundation models such as DINOv3 yield smooth reconstructions but tend to be overly flat. The
Transformer-based DPT and ZoeDepth produce more coherent results, with DPT excelling at local
details while ZoeDepth offers better global consistency. The Stable Diffusion-based generative model,
Marigold, provides highly detailed depth maps and handles transparent regions more reasonably than
other models, but can introduce geometric hallucinations such as disproportionate object scaling or
missing small objects. Depth Anything V2 consistently delivers state-of-the-art performance in terms
of detail and sharpness on non-transparent objects but sometimes fails on transparent or reflective
regions.

These findings indicate that all tested models still struggle with fine-scale geometry, transparent
surfaces, and mirrors, motivating the development of our proposed image editing framework.

4.4 Evaluation of Specialized Methods for Transparent-Object Depth Estimation

For both specialized methods, qualitative evaluation was conducted on a self-collected set of real-
world images containing transparent and semi-transparent objects. These scenes were designed to
examine the models’ ability to generalize to transparent-object scenarios and to capture accurate
geometry within challenging optical regions.

Modest. The Modest model exemplifies a co-training approach, jointly predicting depth and
segmentation in an end-to-end framework. Its architecture uses a visual encoder and an iterative
fusion decoder, where semantic and geometric features are progressively refined through shared-
weight gates to allow the two tasks to mutually inform each other.

In our experiments, both official pre-trained versions of the model showed limited generalization on
diverse real-world scenes, producing generally inaccurate depth boundaries. The model trained on the
purely synthetic dataset performed slightly better, suggesting that the co-training strategy may cause
the model to over-focus on transparent objects and their immediate surroundings, at the expense of
ignoring non-transparent objects located further away in the scene.

Depth4Tom. The Depth4Tom model utilizes a monocular distillation pipeline. It first in-paints
transparent regions, identified by a mask, with random uniform colors. These augmented images are
then processed by a pre-trained depth network to generate pseudo-labeled "virtual depths," which are
used to fine-tune the network itself.

Experimental results show that the model’s output tends to assign background depth values to
transparent surfaces like windows. For objects composed of mixed materials, such as a glass kettle
with an opaque base, a depth discontinuity was observed at the material junctions. The method’s
performance is sensitive to the accuracy of the input mask, as inaccuracies can lead to artifacts at the
depth boundaries, causing an unnatural transition between the in-painted region and its surroundings.

Analysis of Image Editing on Synthetic Data. Controlled experiments were conducted in a
Blender synthetic environment under a fixed HDR environment map and identical camera settings.
With the transparent glass material, Depth Anything V2 produced inaccurate depth predictions,
exhibiting both blurred boundaries and distorted internal gradients. After replacing the material with
an opaque metallic one, the predicted depth maps became substantially more accurate and spatially
coherent across the entire object region. Depth values inside masks were normalized for visualization
to emphasize internal gradients and facilitate visual comparison. These results support the core
hypothesis that the major challenge in transparent-object depth estimation arises from the optical
ambiguity of transparency itself, and that converting the material to opaque provides clearer visual
cues for depth inference.

Image Editing Attempts on Real-World Scenes. For the real-world experiments, self-collected
images containing transparent objects were used to explore image-level “opaquing” strategies. Depth
values inside masks were normalized for visualization to emphasize internal gradients and facilitate
visual comparison. Two approaches were examined: mask-filling and diffusion-based generative
editing.
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(a) Comparison between Modest and Depth4Tom on real-world transparent-object scenes.
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(b) Synthetic Blender experiment demonstrating material replacement effects on depth prediction.

Figure 2: (a) On real-world scenes, Modest often produces inconsistent depth boundaries and neglects distant
opaque objects, while Depth4Tom yields more continuous backgrounds but exhibits discontinuities at mixed-
material junctions. (b) In synthetic Blender experiments, transparent glass objects result in blurred boundaries
and distorted internal gradients in Depth Anything V2 predictions, while replacing transparent BSDFs with
opaque metallic materials yields sharper boundaries and spatially coherent geometry. Depth values within
transparent-object masks are normalized, and mask boundaries are shown in red.

Mask-filling involves populating a complete object mask with solid black. This approach effectively
resolved the depth “see-through” issue, rendering the object as a solid volume. However, its drawbacks
are the complete loss of internal geometric cues and a high dependency on the accuracy of the
segmentation mask. Diffusion-based generative editing employs models such as nanobanana
and ControlNet to perform image-level replacement of transparent materials. Existing general-
purpose diffusion models exhibit instability when tasked with precise transparency-to-opaque editing.
Nanobanana sometimes modifies regions outside the intended mask area, as it does not provide
an explicit masking interface and relies solely on prompt-based constraints, which leads to limited
spatial accuracy. ControlNet often either makes no visible modification or alters regions incorrectly,
suggesting a limited understanding of transparency-related prompts. This suggests that, while the
current methods can produce plausible results in some cases, a specialized model is necessary to
ensure stable and faithful transparency-to-opaque editing.

However, results from both the baseline experiments and the image-editing tests indicate that diffusion-
based approaches hold promise for handling transparent objects, as they often generate visually more
plausible depth maps than see-through depth predictions.

4.5 Evaluation of the Proposed Method

Quantitative Evaluation. Quantitative evaluation will follow the datasets and metrics introduced
in Section .1] for comparison with the baseline models.

Qualitative Evaluation. Qualitative evaluation will also adopt the same visualization protocol as
previous experiments, enabling consistent comparison across all methods. Depth values inside masks
will be normalized for visualization to emphasize internal gradients and facilitate visual comparison.
Analysis will focus on improvements in geometric accuracy, boundary sharpness, and depth continuity
relative to the baseline results.
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Figure 3: Comparison of real-world transparency-to-opaque editing results. Top: original image; middle: mask-
filling, two Nanobanana edits generated with different prompts, and a ControlNet edit; bottom: corresponding
depth predictions. Depth maps are normalized within transparent-object masks, with mask boundaries highlighted
in red.

All the results will be reported once evaluation is complete.
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Figure 4: Timeline illustrating the estimated progress and the transition from the initial refinement-based plan
to the current material-replacement pipeline.

This study investigated how current state-of-the-art (SOTA) monocular depth estimators behave in the
presence of transparent objects. Preliminary experiments, together with a review of existing datasets
and models, revealed consistent failure modes on transparent regions and indicated that data biases
further limit generalization. As a consequence, the methodological focus shifted from depth-to-depth
refinement to a material-replacement—based preprocessing pipeline, and the project timeline was
adjusted accordingly, as summarized in Figure ]

5.1 Findings from Experiments

Initial experiments applied established SOTA models—such as Depth Anything V2 [9], Marigold
[10], and related variants—to synthetic scenes containing table-top objects. Contrary to the original
expectation that clutter and occlusion would be the primary difficulties, these models produced reliable
depth estimates for cluttered opaque scenes, while transparent materials remained the principal source
of error. Depth predictions in transparent regions often collapsed to background values or exhibited
strong artifacts near object boundaries.



To verify this observation, controlled scenes were rendered in Blender, isolating objects with trans-
parent or semi-transparent textures while maintaining identical geometry and lighting. The outcomes
confirmed that existing SOTA monocular estimators failed to recover the geometry of transparent
objects even under idealized synthetic conditions.

Beyond direct experimentation, an examination of datasets and specialized transparent-object models
revealed additional limitations. Most existing datasets were synthetic and repetitive, typically created
from a small set of 3D meshes—obtained through CAD scanning or manual modeling—and expanded
via pose, lighting, and deformation permutations. Although algorithmic mesh generation increased
shape diversity, the resulting distributions remained constrained, limiting generalization to real-world
materials and geometries. Models trained on such datasets, including MODEST and Depth4ToM,
performed poorly in this setting: MODEST produced pronounced noise caused by specular reflections,
whereas Depth4ToM exhibited geometric deformation and instability when estimating the depth of
rendered glass objects.

Overall, these results supported two key conclusions:

1. Transparent objects constituted a systematic failure case for existing monocular depth-
estimation frameworks.

2. The underlying data foundations were biased, relying heavily on synthetic repetition that
restricted generalization to novel materials and optical properties.

5.2 Comparison with Initial Expectations

At the beginning of the study, the primary challenge was expected to be depth prediction in cluttered
table-top scenes with overlapping geometry. In practice, SOTA estimators handled such scenes
relatively well, whereas transparent items introduced the most severe errors. This outcome shifted
the problem definition from one centered on geometric complexity to one dominated by optical and
material ambiguity, and it motivated the transition to an appearance-normalization perspective.

5.3 Future Work and Updated Plan

The observed consistency of failure modes across multiple models and synthetic datasets suggests
that the conclusions are robust rather than dataset-specific. Nevertheless, further validation is
required. Planned evaluation includes extending experiments to real-world captures of transparent
materials under natural lighting, analyzing the influence of material parameters such as refractive
index, thickness, and internal reflection, and testing scale alignment and cross-model consistency of
predictions across both synthetic and real domains. These steps are intended to determine whether the
limitations are inherent to current architectures or arise primarily from biased training distributions.

In light of these findings, future work will focus on mitigation strategies that operate as a preprocessing
stage rather than on direct retraining of depth networks. Because most SOTA estimators perform
accurately on non-transparent regions, the problem is reformulated as follows: if the appearance of a
transparent object can be temporarily converted into an opaque form—through texture replacement,
refraction suppression, or learned transparency masking—then standard monocular depth pipelines
can recover geometry without architectural modification.

The updated plan therefore comprises three main components:

1. Designing a texture-replacement or transparency-neutralization module that converts trans-
parent regions into synthetic opaque counterparts while preserving the underlying geometry.

2. Integrating this module into a two-stage pipeline consisting of (a) transparency alteration
and (b) depth estimation using existing SOTA models such as Depth Anything V2 [9] and
Marigold [10].

3. Conducting comparative evaluations against current baselines to assess whether the prepro-
cessing reliably restores depth accuracy for transparent objects on both synthetic and real
benchmarks.

The initial project timeline emphasized pseudo-ground-truth generation and depth-to-depth refinement,
followed by integration into downstream pose and grasping pipelines. After the methodological shift
to material replacement, the timeline was updated to prioritize synthetic data generation for paired
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transparent—opaque renders, training of a ControlNet-based material-replacement model [36]], and sub-
sequent end-to-end evaluation of the two-stage pipeline. Figure [T|reflects this transition, marking the
completion of the exploratory phase and the commencement of the appearance-normalization—based
approach.
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6 Appendix

6.1 Initial Framework and Scope Transition
6.1.1 Overview of the Initial Framework

The early investigation formulated tabletop depth refinement as a single-image, depth-to-depth
learning problem. Given an RGB image I € R*W*3 without known intrinsics, the objective was
to predict a refined depth map D e REXW that corrects structural artifacts and stabilizes scale. The
pipeline was designed in two stages: (i) pseudo ground-truth construction and (ii) transformer-based
depth refinement.

6.1.2 Stage 1: Pseudo Ground-Truth Construction

Stage 1 aimed to synthesize a high-quality pseudo ground truth D* and a per-pixel confidence map
C € [0,1]"*W for supervision, together with instance masks {M},}/_ . Semantic guidance was
provided by a vision-language model (VLM). The VLM produced a structured scene description
including object categories, materials, coarse locations, and semantic flags (e.g., mirrors, screens,
transparent surfaces). This semantic pass identified unreliable regions for geometric supervision
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and suggested geometry priors such as planar, piecewise planar, cylindrical, spherical, or thin-plate
surfaces to regularize local fitting.

Instance proposals were generated by a text-conditioned detector and refined into clean masks. Low-
confidence or semantically inconsistent proposals were filtered using text—image similarity checks.
Each accepted mask was morphologically cleaned, and a signed-distance transform defined inner and
outer boundary bands for localized boundary operations.

Two complementary monocular predictors provided initial depth estimates. After log-depth normal-
ization to [0, 1], a fused depth D) was formed by per-pixel weighting that preferred sharper edges
where predictors disagreed, while a variance map V' captured local disagreement. Boundary fattening
and occlusion ambiguities were mitigated using band-limited, edge-aware filtering guided by image
gradients. Across mask boundaries, plausible near—far depth transitions were enforced, preferring the
lower-variance hypothesis.

Within each instance M}, the semantically suggested geometry was fitted by robust estimation (e.g.,
RANSAC). Residuals R, = D(©) — Dg"de] were denoised using instance-restricted total variation or
anisotropic diffusion to preserve thin ridges. Small instances were temporarily upsampled to prevent
oversmoothing, and missing regions were filled by in-instance interpolation or Poisson/Laplacian
inpainting with ridge preservation. At the scene level, instance reconstructions were fused, resolving
overlaps via residual and variance comparisons. When a tabletop plane was detected, planar support
and non-penetration constraints were applied at contact bands, followed by edge-aware harmonization
near seams.

The confidence map combined geometric residuals, boundary proximity, estimator variance, hole-fill
ratios, and semantic uncertainty. For pixel x,

C(z) = o(—ar(x) + fd(x) —yv(z) — dh(z) — ns(x)),

and C(z) = 0 in ignored regions. Quality checks on boundary thickness, contact consistency, and
abnormal residual variance triggered local fallbacks when inconsistencies were detected. The outputs
of Stage 1 were (D*, C, {M},}) and corresponding semantics.

6.1.3 Stage 2: Transformer-Based Depth Refinement

Stage 2 trained a compact transformer f, that refined noisy depth maps from arbitrary monocular
estimators. The mapping fy : RF*W — RTXW produced D = f4(D) to approximate D*. The
architecture was an encoder—decoder transformer operating on non-overlapping p X p patches in
log-depth space. Each patch was flattened, linearly projected into a token, and augmented with 2D
sine positional encodings. The backbone consisted of L layers of windowed multi-head self-attention
with periodic global tokens to propagate long-range context for consistent scale and symmetry. An
optional instance raster and distance-to-edge map could be concatenated to the embeddings. A
convolutional head predicted a residual R in log-depth, yielding D = D+ R, which preserved coarse
geometry while emphasizing boundary corrections.

The loss function balanced scale-invariant depth fidelity, edge sharpness, and surface normal align-
ment:

U(z) = Asilsizog (D(x), D*(2)) + Av | VD(2) = VD* (@)1 + Ma(1 — (A(2), n" (2))) ,

and the global objective was

L= w@)l(z), w)=C)bx)ska)-

Here b(x) emphasized boundary bands to enforce crisp discontinuities, while s, = 1/+/area(Mjy,)
compensated for bias against small objects. Standard photometric and geometric augmentations were
applied during pseudo-label generation, and mild perturbations in depth space improved robustness
to upstream estimator noise.

At inference, the transformer accepted a single noisy depth map and produced a refined map in
one forward pass, requiring no intrinsics, semantics, or masks. This design yielded sharper bound-
aries, stable global scale, and accurate small-object reconstruction, functioning as a plug-and-play
refinement module for generic monocular depth predictors.
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6.1.4 Scope Transition and Motivation for the Current Work

Although the above framework effectively integrated semantic reasoning and geometric priors, it
encompassed several research-level subproblems—boundary refinement, occlusion recovery, and
confidence modeling as each requiring dedicated solutions. Preliminary experiments showed that
simple gradient-based edge alignment was unreliable, as image edges often diverge from true geomet-
ric discontinuities. Developing a unified model to robustly handle all these cases was computationally
expensive and theoretically unstable.

The research scope was therefore narrowed to a more tractable but still challenging domain: trans-
parent objects. These represent a dominant failure mode for monocular estimators due to refraction
and transmission ambiguities. The problem was reframed from post-hoc depth correction to input
preprocessing, emphasizing that the root cause lies in RGB appearance rather than in depth regression
itself. This shift led to the current material-replacement framework described in Section[3] which
translates transparent appearances into opaque counterparts before depth inference.
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