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Abstract

Depth estimation in tabletop scenes often fails for small objects that provide weak
visual cues. These objects yield fat boundaries, missing parts, and unstable scale,
which block downstream steps such as creating tight three-dimensional bounding
boxes and accurately determining orientation, scale, and position in real-to-sim
pipelines. While large structures are handled reasonably well by current monocular
methods, small items remain brittle. We work in the single-image setting and target
this gap and show that our design also benefits larger objects. We cast refinement
as a depth to depth denoising problem and propose a two stage pipeline. Stage
one builds pseudo ground truth by segmenting each object with a large language
model guided semantics to ignore mirrors, paintings, and transparent or reflective
surfaces, and to produce text prompts for grounded segmentation, and applying
instance wise optimization that combines local geometric priors such as piecewise
planar and quadric surfaces, edge-aware boundary regularization, and scene-level
scale and shift calibration. This stage also produces a per pixel confidence map.
Stage two trains a noise-conditioned model that takes a noisy depth map as input
and returns a refined depth map in a single forward pass. Experiments on our
newly collected tabletop dataset of about 3000 images with ground truth depth,
with 200 held out photos for validation, show consistent gains over Depth Anything
V2, Marigold, MiDaS, and ZoeDepth in delta accuracy and SILog, with sharper
boundaries and more accurate three-dimensional boxes and six degrees-of-freedom
(DoF) pose estimation. Used as a drop-in depth enhancer from a single RGB image,
our outputs also improve downstream semantic segmentation, depth estimation,
object detection, and object discovery, and the dataset and evaluation protocol
constitute an additional contribution.

1 Introduction

Monocular depth is central to a wide range of downstream tasks, from three-dimensional (3D)
reconstruction, navigation, and scene understanding to modern applications in content creation and
interactive simulation [1, 2]. In tabletop scenes, depth quality directly governs grasp success, collision
avoidance, and precise placement for robot manipulators, while also stabilizing real-to-sim pipelines
and automated hyperparameter optimization [3–5]. However, current monocular estimators struggle
with small, texture-poor, and self-occluded objects, producing thick/over-smoothed boundaries,
missing parts, and unstable scale that degrade 2D boxes, 6D pose, and grasp scoring [6–10]. We
revisit tabletop depth as a single-image depth-to-depth refinement with instance-aware geometry and
semantic guidance [11–13], yielding sharper boundaries, stable scale, and manipulation-ready depth
for robotics and perception.

Despite the rapid progress of monocular foundation models, tabletop depth remains brittle due to four
recurring factors. (i) Small parts and high-frequency details are easily smoothed out, yielding thick
boundaries and missing structures [14, 15]. (ii) Transparent and specular surfaces (e.g., glass, mirrors,
glossy plastics) entangle physical geometry with reflections and refractions [16, 17]. (iii) Screens
and photographs introduce rich but misleading internal depth cues on a planar surface [11, 13, 17].
(iv) Strong cast shadows obscure contours or create spurious edges [15, 18]. These factors amplify
the ill-posedness of monocular depth and highlight a shortage of instance-aware priors in current
estimators.

Our key insight is to treat tabletop scenes as sets of manipulable instances and to refine depth by
coupling geometry with semantics at the instance level. Concretely, we construct pseudo ground-truth
depth and a confidence map via instance-aware optimization guided by vision-language semantics
and material/support priors (e.g., support plane, part identity, reflectivity). A lightweight transformer
then performs depth-to-depth refinement in a single forward pass, trained with confidence-weighted,
boundary-preserving losses and scale-stabilizing objectives that anchor depth across objects and the
support surface [14, 19].

Across diverse real tabletop photos, our approach yields sharper boundaries, recovered small parts,
and a more stable relative scale, facilitating downstream segmentation and manipulation.
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The main contributions of this paper are summarized below:

• We introduce an object-centric refiner with boundary-preserving objectives that explicitly
protect thin parts and high-frequency details, turning over-smoothed edges and missing
micro-structures into sharp, contiguous geometry.

• We incorporate semantics-driven priors and confidence modeling for transparent/specular
regions (glass, mirrors, glossy plastics), suppressing spurious depths from reflec-
tions/refractions and preventing “hallucinated” virtual content from contaminating physical
geometry.

• We detect and regularize planar pictorial surfaces (screens, photographs) so that depicted
3D scenes are treated as flat carriers while nearby real objects retain correct relief, reducing
depth leakage from 2D imagery.

• We curate a high-precision dataset of 3,000 pixel-aligned triplets: RGB image, semantic
segmentation mask, and depth map, covering small parts, transparent/specular materials,
pictorial surfaces, and strong shadows. The dataset is built to stress the above failure modes
and to support future training and benchmarking of instance-aware depth refinement.

2 Related Work

Monocular depth estimation has been widely studied, from early CNN-based models [20] to more
recent transformer approaches such as DPT [21] and DINOv2 [22]. These global methods achieve
strong performance on benchmarks but often produce coarse depth in cluttered tabletop settings,
where objects are small, textureless, and self-occluded. At the same time, foundation models for
segmentation, such as the Segment Anything Model (SAM) [23] have demonstrated the ability to
generalize mask generation across domains. Together, these advances highlight the potential of
combining segmentation and depth estimation, but also reveal a gap: few methods directly exploit
segmentation for object-level depth refinement.

Monocular depth estimation Building on this progression, several representative depth models
demonstrate the field’s trajectory and limitations. AdaBins [24] extended CNNs by learning adaptive
depth bins per-image for metric estimation. Later, transformer-based approaches emerged, such
as DPT [21] and ZoeDepth [25]. DPT reassembles patch embeddings from a ViT backbone for
dense regression, while ZoeDepth combines a relative depth network with a specialized metric
scaling head. Foundation models like DINOv3 [22] showed that powerful self-supervised features
require only a simple linear probe for depth prediction. Generative approaches such as Marigold
[26] repurpose latent diffusion models to generate highly detailed results. The current state-of-the-art
Depth Anything V2 (DAv2) [27], uses a DINOv2 backbone with large-scale pseudo-labeling to
achieve strong performance, setting a new benchmark on the NYU-D dataset where its fine-tuned
ViT-L model achieves an AbsRel of 0.056 and a δ1 accuracy of 98.4%.

To ground our work, we qualitatively evaluate existing methods on challenging tabletop scenes,
revealing a clear performance hierarchy and common failure modes. The CNN-based AdaBins
produces the weakest results, with severely blurred contours. Foundation models like DINOv3
yield smooth but overly flat reconstructions. Supervised methods like DPT and ZoeDepth are more
coherent, with DPT excelling at local detail while ZoeDepth offers better global consistency. The
generative Marigold provides highly detailed maps but can hallucinate geometry. Depth Anything v2
consistently delivers state-of-the-art detail and sharpness. Despite these advancements, our evaluation
reveals that all models still struggle with fine-scale geometry, transparent objects, and mirrors,
motivating our work.

Denoising Vision Transformers. The Denoising Vision Transformer (DVT) [28] shows that pre-
trained ViTs contain noisy feature maps that degrade dense predictions like depth. By introducing
a denoiser module, DVT stabilizes features and improves performance across tasks. Crucially, its
two-stage design—first denoising features, then evaluating on downstream tasks—inspires our own
methodology, where we refine depth in Stage 1 and train a network in Stage 2. Unlike DVT, which
denoises globally across the entire scene, we extend this idea locally: segmenting objects and applying
per-object priors to recover sharper boundaries and accurate 3D bounding boxes for tabletop scenes.

Segment Anything. The Segment Anything Model (SAM) [23] introduced a universal framework for
object segmentation, later extended by Grounded-SAM [29] for text-prompted detection and masks.
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These models are powerful for mask generation but are rarely leveraged for depth refinement. In our
pipeline, segmentation serves as a critical intermediate step, enabling object-wise depth refinement
and tighter 3D bounding boxes. SAM therefore provides the building block that allows us to address
the limitations of global monocular estimators.

3 Pipeline

3.1 Proposed Method

We cast tabletop depth refinement as single-image, depth-to-depth learning. From one RGB image
I without intrinsics, we synthesize high-quality pseudo ground truth depth D⋆ and a per-pixel
confidence map C via an instance-aware optimization pipeline steered by semantic cues from a
vision–language model (VLM). These pseudo labels supervise a lightweight transformer that takes
a noisy monocular depth map D and predicts a refined map D̂ in one forward pass. Training is
confidence-weighted and boundary-aware, which sharpens discontinuities, stabilizes global scale,
and preserves small objects that are otherwise smoothed away.

3.2 Stage 1: Pseudo ground truth construction

Given a single tabletop image I ∈ RH×W×3, our target is a refined depth D̂ ∈ RH×W . Stage 1
constructs pseudo ground truth D⋆ and confidence C ∈ [0, 1]H×W , together with instance masks
{Mk}Kk=1. We begin by querying a VLM for a structured scene sketch that lists object categories,
materials, coarse locations, and special flags (mirrors, screens, transparent surfaces). This semantic
pass serves two purposes: (i) it identifies regions that are inherently unreliable for geometric supervi-
sion and therefore should be ignored, and (ii) it proposes geometry priors (planar, piecewise planar,
cylindrical, spherical, quadric, thin planar) that regularize subsequent fitting, which is crucial for
small parts with weak monocular cues.

Grounded by the VLM’s short textual queries, we obtain instance proposals and refine them into
clean masks via a modern text-conditioned detector/segmenter. Low-confidence or semantically
mismatched proposals are filtered with text–image similarity checks. Each accepted mask is morpho-
logically cleaned, and a signed distance transform provides inner/outer boundary bands that localize
later boundary operations without contaminating object interiors.

To initialize depth without camera intrinsics, we aggregate two complementary monocular predictors
on I . Following log-depth normalization to [0, 1], we form a fused estimate D(0) by a per-pixel
selection/weighting that prefers sharper edges where predictors disagree, while retaining a local
variance map V as a measure of estimator disagreement. We then correct common monocular
artifacts—boundary fattening and occlusion ambiguity—by applying band-limited, edge-aware
filtering guided by image gradients; along surface normals crossing mask boundaries, we enforce
plausible near–far steps and choose the sharper, lower-variance hypothesis where needed.

Inside each instance Mk, we fit the semantically suggested principal geometry with robust estimators
(e.g., RANSAC with robust penalties), treat the current depth as a height field, and model the residual
Rk = D(0) − Dmodel

k . Residuals are denoised by instance-restricted total variation or anisotropic
diffusion to preserve thin ridges and corners, and very small parts are temporarily upsampled to
avoid oversmoothing before being downsampled back. Missing regions are completed by in-instance
interpolation for small holes and by Poisson/Laplacian inpainting for larger ones, with strong ridge
preservation on thin structures. At the scene level, we fuse instance reconstructions, resolving
overlaps by favoring lower model residuals and estimator variance, and, when a table is detected
semantically, we fit a planar support and enforce non-penetration at contact bands. A light, edge-aware
harmonization outside boundary bands aligns seams while keeping discontinuities crisp.

Finally, we assign per-pixel confidence by combining geometric residuals, boundary proximity, esti-
mator variance, hole-fill ratios, and semantic risk (high for reflective/transparent regions). Concretely,

C(x) = σ(−αr(x) + βd(x)− γv(x)− δh(x)− ηs(x))
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and we set C = 0 in ignored regions. A suite of quality checks (boundary thickness, contact consis-
tency, abnormal residual variance) triggers local fallbacks—e.g., switching to simpler priors—when
inconsistencies are detected. The output of Stage 1 is (D⋆, C, {Mk}) and associated semantics.

3.3 Stage 2: Transformer-based depth refinement

At training time, the model receives a noisy depth map D from any monocular estimator and learns
a mapping fθ : RH×W →RH×W such that D̂ = fθ(D) approximates D⋆. The architecture is a
compact encoder–decoder transformer operating on non-overlapping p× p depth patches. Each patch
is flattened in log-depth space, linearly projected to a token, and endowed with 2D sine positional
encodings. The backbone comprises LL layers of windowed multi-head self-attention with periodic
global tokens to propagate scene-level context needed for consistent scale and long-range symmetry.
Optionally, an instance-raster channel and a distance-to-edge map can be concatenated to token
embeddings; the base model trains without them. A lightweight convolutional head upsamples the
token grid and predicts a residual R in log-depth, yielding D̂ = D +R. This residual formulation
preserves the coarse structure of D and focuses learning capacity on corrections around boundaries,
thin parts, and mis-scaled regions.

Training minimizes a confidence-weighted objective that balances scale-invariant fidelity, edge
sharpness, and surface orientation:

ℓ(x) = λsiℓSILog(D̂(x), D⋆(x)) + λ∇∥∇D̂(x)−∇D⋆(x)∥1 + λn

(
1− ⟨n̂(x), n⋆(x)⟩

)
and

L =
∑
x

w(x) ℓ(x), w(x) = C(x) · b(x) · sk(x)

Here b(x) boosts pixels within a fixed band around instance boundaries to enforce crisp discontinuities,
while sk emphasizes small objects, for example sk = 1/

√
area(Mk) to counter dataset-level bias

against tiny parts. We apply standard photometric/geometric augmentations when forming pseudo
labels and mild perturbations in depth space during training to promote robustness across upstream
monocular predictors.

At inference, the transformer consumes a single noisy depth map and emits a refined depth in one
pass; no semantics, intrinsics, or masks are required. Coupled with Stage 1 supervision, this design
yields manipulation-ready depth with sharp edges, stable global scale, and faithful reconstruction of
small and thin structures, while remaining a drop-in enhancer for arbitrary monocular estimators.

3.4 Validation Strategy

Inspired by the methodology of DVT [30], which validates upstream improvements by measuring
performance on a suite of downstream tasks, our validation strategy is centered on quantifying the
performance uplift our refined depth maps provide to three core downstream tasks. For each task,
we will employ a state-of-the-art model and evaluate its performance on a standard benchmark,
comparing the results obtained with our refined depth against a carefully established baseline.

1. 3D Object Detection. To demonstrate that our depth refinement enables more accurate 3D scene
understanding, we will use the 3DETR [31] model on the SUN RGB-D [32] benchmark. We will first
reproduce the baseline performance reported in the original 3DETR paper (59.1AP25) by running
the pre-trained model on the original depth maps to ensure consistency. Subsequently, we will run
the same model on our refined depth maps. A significant improvement in mean Average Precision
(mAP) over the established baseline will validate the geometric benefits of our approach.

2. 6D Object Pose Estimation. To show that providing our refined depth boosts the accuracy of
pose estimation models, we will use the MegaPose [33] framework on the YCB-Video [34] dataset.
To ensure a fair comparison, we will first establish our own baseline by submitting pose predictions
generated using the original depth maps to the official BOP Challenge evaluation platform. We will
then submit a second set of results generated using our refined depth maps. An increase in the official
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Average Recall (AR) score over our own baseline will directly demonstrate the positive impact of our
depth refinement.

3. Robotic Grasp Planning. To validate that our refined depth allows grasp generation models
to produce more reliable grasps, we will use the pre-trained Contact-GraspNet [35] model on the
GraspNet-Billion [36] benchmark. We will conduct a controlled comparison using the official
evaluation code provided by the GraspNet authors. We will establish a baseline by calculating the
Average Precision (AP) on the original depth maps, and then calculate a new AP score using our
refined depth maps. An increase in the AP score will directly demonstrate our method’s value for
robotic manipulation.

3.5 Potential Obstacles and Limitations

While our two-stage approach is designed to rectify key weaknesses in existing monocular depth
estimators, its complexity introduces a corresponding set of potential obstacles. The Stage 1 pipeline,
in particular, relies on a cascade of heuristic-driven modules, where the success of the entire process
hinges on the performance of each component.

Failures in Stage 1 can arise from several sources. First, the entire process is predicated on the
semantic interpretation from the Vision-Language Model (VLM). Beyond generating hallucinations
or failing to identify challenging content like mirrors, the VLM’s choice of geometric prior is critical.
An incorrect prior can lead to high residual errors, triggering our fallback mechanism to cycle through
alternative priors. However, it is possible that no alternative provides a substantially better fit. Second,
the text-to-mask segmentation pipeline is a potential bottleneck. The performance of Grounded-SAM
is sensitive to the VLM-generated text prompts. For challenging cases such as mirrored, reflective,
or shadow-obscured boundaries, automated segmentation may be unreliable. In such cases, manual
inspection and interactive segmentation (e.g., using point or box prompts with SAM) may be required
to ensure mask accuracy. These mask imperfections, if not corrected, directly impact all downstream
geometry operations.

Furthermore, several optimization steps introduce their own risks. The initial depth fusion of two
models may produce sub-optimal results if both models share a common failure mode—for instance,
if both misinterpret a textureless curved surface as planar. In such scenarios, our fusion logic, which
selects based on edge sharpness or local variance, lacks a correct source to choose from. The
subsequent boundary refinement using guided filtering is susceptible to noise in the guide image (the
RGB input); artifacts in the color image can be incorrectly transferred to the depth map, creating
plausible but false geometric details. The core geometric fitting and residual smoothing step is also
fragile. RANSAC may fail to find a stable fit if the percentage of inliers in the initial depth is too
low. Moreover, the residual smoothing process involves an inherent trade-off: aggressive smoothing
can erase subtle but meaningful surface details, while gentle smoothing may fail to remove sufficient
noise from the residual.

Finally, at the scene level, integration failures can occur. The logic for resolving overlaps between
instances might make an incorrect decision, leading to unnatural seams. The final Laplacian harmo-
nization, while edge-aware, could still introduce minor smoothing artifacts at the junctions between
different objects. These potential issues underscore the heuristic nature of Stage 1, where the final
quality of the pseudo ground truth is a product of many interdependent, and sometimes fragile,
automated decisions.

Challenges also exist in the Stage 2 transformer-based refinement. The refinement transformer
may learn systematic biases from the pseudo-GT generator. If the Stage 1 pipeline consistently
produces overly flat planes or sharp edges, the transformer will learn to replicate these artificial
characteristics rather than representing true scene geometry. Furthermore, a key challenge is that a
transformer predicting residuals is inherently designed for refinement, not whole-scale reconstruction.
For catastrophic errors, such as a hallucinated reflection, the required correction is a large-scale,
non-local transformation, which lies outside the typical capabilities of such a model. Our proposed
solution addresses this by using the Stage 1 pipeline to generate a large corpus of training pairs that
explicitly demonstrate these corrections. By providing the transformer with numerous examples of
structurally flawed inputs and their perfectly resolved ground truth counterparts, we hypothesize that
the model can learn these complex mappings and overcome the typical limitations of a residual-based
refiner.
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4 Timeline

Figure 2: We include a timeline that estimates our progress on this project
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