
Incompressible Fluid Simulation: A Comparison
YUMENG HE, University of Southern California, USA
HSIN LI, University of Southern California, USA
YUCHEN CHEN, University of Southern California, USA
XU CHEN, University of Southern California, USA

Abstract :
Our project is a 2D incompressible fluid simulation implemented in C++ with visualization using OpenGL and GLUT. The main objective
is to compare the performance, visual behavior, and numerical characteristics of different fluid simulation methods, including: Grid-
based (Stable Fluids), Particle-based (SPH), Particle-In-Cell (PIC),hybrid PIC/FLIP method(PIC/FLIP), Affine Particle-In-Cell (APIC) This
simulation provides a visual and algorithmic comparison of each method’s strengths and weaknesses.

Index Terms: fluid simulation, incompressible, particle, grid, hybird

1 Introduction

Fluid simulation is a central topic in physics-based graphics and
engineering. Researchers study two broad classes of flow. Com-
pressible fluids—such as smoke, fire, or drifting snow—change
density as they move. Incompressible fluids—such as wa-
ter—preserve volume. Our project narrows its focus to incom-
pressible flow because it underpins many game and film effects.

Scientists have pursued fluid solvers for more than three
decades. Early work in the 1990s split along two lines. Grid-
based methods stored velocity on fixed cells and solved pressure
on a lattice. Particle methods—notably Smoothed Particle Hydro-
dynamics (SPH)—tracked discrete parcels of mass. Each line had
limits: grids diffused small details, while pure particles struggled
with volume loss and boundary handling.

Around 2000, hybrid techniques emerged. Particle-In-Cell (PIC)
used a grid for forces and particles for advection. FLIP kept
the same layout but reduced numerical damping. Material Point
Method (MPM) added elastoplastic behavior for snow-like media.
Affine Particle-In-Cell (APIC) later improved rotational fidelity by
carrying local affine velocity. These methods mix Eulerian and
Lagrangian views to balance stability and detail.

Our project builds an interactive framework that implements
five representatives: Stable Fluids (grid), SPH (particle), PIC, hy-
brid PIC/FLIP, and APIC.We run every solver on the same domain,
time step, and boundary conditions. We then measure speed,
memory use, and visual artifacts. The side-by-side view reveals
eachmethod’s trade-off between diffusion, noise, and stability, and
helps artists choose the right tool for a desired effect.

1.1 Contribution

This project as the follow contributions.

• The codebase supports five fluid solvers behind one interface.
Users can swap methods with a single flag.

• The viewer renders density, velocity, and vorticity in real
time. It uses GLUT for portability.

• We fix domain size, time step, and boundary conditions
across all tests. This isolates algorithmic differences.

• We capture signature phenomena such as diffusion, particle
clumping, and energy drift. Screenshots and videos illustrate
each effect.

2 Background
Fluid simulation typically relies on solving the Navier-Stokes
equations, which describe fluid motion as follows:

𝜕u
𝜕𝑡
+ (u · ∇)u = − 1

𝜌
∇𝑝 + 𝜈∇2u + f (1)

∇ · u = 0 (2)
where u is the velocity field, 𝑝 is the pressure, 𝜌 is the density, 𝜈 is
the kinematic viscosity, and f represents external forces like grav-
ity or user input. The second equation enforces incompressibility.

2.1 Grid-based (Stable Fluids)
Grid-based methods store velocity and pressure fields on a fixed
Eulerian grid. The Stable Fluids method proposed by Stam (Stam,
2023) employs an implicit numerical scheme that guarantees sta-
bility at the cost of numerical diffusion. This approach involves
four primary steps: advection, diffusion, force application, and
pressure projection to ensure incompressibility. Although easy
to implement and stable, this method diffuses small-scale features
rapidly, causing loss of detail.

2.2 Particle-based (SPH)
Smoothed Particle Hydrodynamics (SPH) is a purely Lagrangian,
particle-based technique. It represents fluid with discrete particles
that carry fluid properties such as density and velocity (Monaghan,
1992). Particle interactions are computed using smoothing ker-
nels, enabling flexible boundary handling and adaptive resolution.
However, SPH often struggles with preserving volume and can
produce noisy visual artifacts, especially with low particle counts.

2.3 Hybrid Methods
Hybrid approaches blend Eulerian grids and Lagrangian particles,
seeking a balance between stability, accuracy, and visual realism.
Notable hybrid methods include:

Particle-In-Cell (PIC): PIC (Tskhakaya et al., 2007) transfers
velocities from particles to a grid to compute pressure and forces,
then advects particles using the grid velocities. It offers stability
but introduces significant numerical damping.

FLuid Implicit Particle (FLIP): An improvement over PIC,
FLIP (Brackbill et al., 1988) reduces numerical damping by trans-
ferring velocity changes, rather than absolute velocities, from grid
to particles.



Affine Particle-In-Cell (APIC): APIC (Jiang et al., 2015) fur-
ther improves rotational and detailed motion preservation by stor-
ing affine velocity transformations for each particle, mitigating ex-
cessive dissipation seen in PIC/FLIP methods.

Material Point Method (MPM): Extending PIC, MPM (Bar-
denhagen et al., 2000) simulates elastoplastic and granular mate-
rials by integrating material deformation through particle-grid in-
teractions.

Other advanced hybrid variations include:

• PolyPIC (Fu et al., 2017), which uses polynomial velocity
reconstruction to reduce numerical dissipation.

• MLS-MPM (Moving Least Squares MPM) (Hu et al., 2018),
enhancing accuracy by employing MLS interpolation.

• Impulse PIC (Feng et al., 2022), improving collision han-
dling by explicitly resolving impulses at boundaries.

These hybrid methods significantly advance fluid simulation,
enabling realistic visualization with reduced artifacts and in-
creased computational stability.

3 Methods
To accomplish our project goals, we implemented five distinct
2D incompressible fluid simulation methods—Stable Fluids, SPH,
PIC, PIC/FLIP, and APIC—using C++ for the core simulation and
OpenGL with GLUT for real-time visualization. Each method was
developed independently based on its underlying physical princi-
ples and algorithmic structure. We focused on observing and com-
paring the visual behavior and numerical characteristics of each
simulation through qualitative analysis. The following sections
describe the implementation details and key observations for each
method.

Tools and Learning We used C++ for simulation logic and
OpenGL with GLUT for real-time visualization across all simula-
tion methods. The Eigen library was employed for efficient matrix
operations, particularly for APIC and FLIP methods where affine
velocity matrices were involved.

Throughout the project, we learned how to structure particle-
grid transfer systems, implement spatial neighborhood queries us-
ing a sorting grid, and visualize thousands of particles in real time.
We also gained practical experience with parallel programming,
numerical debugging, and enforcing boundary conditions on stag-
gered MAC grids.

Course Content Reference We applied key concepts from
the course, including hybrid fluid simulation methods (PIC, FLIP,
APIC), particle-grid transfers, SPH kernel functions, external
forces, and pressure projection. These topics directly guided our
simulation and implementation strategy.

3.1 Grid

The first method implemented in our project is the Stable Fluids
method introduced by Stam (Stam, 2023). This grid-based Eulerian
approach uses a fixed discretized grid to represent fluid properties,
such as velocity and density fields. The method ensures uncondi-
tional stability at the expense of numerical diffusion, making it
robust for real-time applications.

The numerical solver follows four main computational steps:

1. Add Source: Introduce external quantities (density, velocity)
into the simulation. Each cell’s value is incremented by a

source term scaled by the simulation timestep:

𝑥𝑖, 𝑗 ← 𝑥𝑖, 𝑗 + Δ𝑡 · 𝑠𝑖, 𝑗

2. Diffuse: Account for viscosity by spreading fluid properties
across the grid. This step employs iterative Gauss-Seidel or
Jacobi methods to solve the diffusion equation implicitly:

𝑥𝑡+1𝑖, 𝑗 − 𝑥𝑡𝑖, 𝑗
Δ𝑡

= 𝜈∇2𝑥𝑡+1𝑖, 𝑗

3. Project: Enforce incompressibility by adjusting the veloc-
ity field to be divergence-free. The divergence is computed,
a pressure field is solved via iterative Jacobi relaxation, and
then the pressure gradient is subtracted from the velocity:

∇2𝑝 = ∇ · u, u← u − ∇𝑝

4. Advect: Transport fluid properties through the velocity
field. Each grid cell is traced backward in time along the ve-
locity field, and bilinear interpolation reconstructs values:

𝑥𝑡+1𝑖, 𝑗 = 𝑥 (p − Δ𝑡 · u(p, 𝑡), 𝑡)

Finally, appropriate Boundary Conditions are applied after
each step: velocity components are inverted at solid boundaries,
and scalar fields maintain values by copying adjacent interior
cells. These operations are encapsulated within the functions
vel_step() and dens_step(), which are sequentially called in
the main simulation loop (simulation()).

3.2 Particle

We used a particle fluid simulation method developed by Mon-
aghan (Monaghan, 1992), called Smoothed Particle Hydrodynam-
ics (SPH). Our code focused on modeling using SPH formulations
with fluid forces such as pressure and viscosity. SPH is an interpo-
lation method that evaluates field quantities of each particle based
on its local neighborhood using radial symmetrical smoothing ker-
nels.

3.2.1 Algorithm The core steps of the SPH particle fluid simu-
lation is summarized in Algorithm 1.

3.3 PIC

The Particle-In-Cell (PIC) method uses both particles and grids
for fluid simulation. Each simulation step involves five primary
phases:

1. Transfer to Grid: Particle velocities are transferred to
nearby grid cells using B-spline weighting functions. The
compact quadratic B-spline kernel used is:

𝑤 (𝑟 ) =

0.75 − 𝑟 2, 0 ≤ 𝑟 < 0.5
0.5 · (1.5 − 𝑟 )2, 0.5 ≤ 𝑟 < 1.5
0, otherwise

(3)

2. Apply Gravity: Gravity force is applied directly to vertical
grid velocities. Grid velocity is updated using:

®𝑣𝑖, 𝑗 .𝑦 −= 𝑔 · Δ𝑡 (4)

2



Algorithm 1 SPH Particle Update Loop
1: // Compute density and pressure
2: for each particle 𝑖 do
3: for each neighboring particle 𝑗 do
4: Compute distance
5: if Within kernel radius then
6: Add density contribution 𝜌𝑖 =𝑚 𝑗 ·𝑊 (𝑟𝑖 𝑗 , ℎ)
7: end if
8: end for
9: Compute pressure from density 𝑃 = 𝑘𝑝 (𝜌 − 𝜌0)
10: end for
11: // Compute forces on each particle
12: for each particle 𝑖 do
13: Initialize 𝑓𝑝 ← 0, 𝑓𝑣 ← 0
14: for each neighboring particle 𝑗 do
15: Compute distance
16: if Within kernel radius then
17: Compute pressure force contribution
18: 𝑓𝑝 =𝑚 𝑗 ·

𝑝𝑖+𝑝 𝑗

2𝜌 𝑗
· ∇𝑊 (𝑟𝑖 𝑗, ℎ)

19: Compute viscosity force contribution
20: 𝑓𝑝 =𝑚 𝑗 ·

𝑣𝑗−𝑣𝑖
2𝜌 𝑗
· ∇2𝑊 (𝑟𝑖 𝑗, ℎ)

21: end if
22: end for
23: Compute gravity force contribution 𝑓𝑔 =𝐺 · 𝑚𝑖

𝜌𝑖

24: Total force on particle 𝑓𝑖 = 𝑓𝑝 + 𝑓𝑣 + 𝑓𝑔
25: end for
26: // Integrate velocity and update positions
27: for each particle 𝑖 do
28: Update velocity 𝑣𝑡+Δ𝑡𝑖 = 𝑣𝑡𝑖 = Δ𝑡 · 𝑓

𝑡
𝑖

𝜌𝑖

29: Update position 𝑥𝑡+Δ𝑡𝑖 = 𝑥𝑡𝑖 + Δ𝑡 · 𝑣𝑡+Δ𝑡𝑖

30: if position 𝑥𝑖 hits domain boundary then
31: Dampen velocity
32: Clamp position to boundary
33: end if
34: end for

3. Solve Pressure: The pressure Poisson equation is solved
using Jacobi iteration. Initially, divergence is calculated for
each grid cell.

∇ · ®𝑣𝑖, 𝑗 =
𝑣𝑖+1, 𝑗 .𝑥 − 𝑣𝑖−1, 𝑗 .𝑥

2
+
𝑣𝑖, 𝑗+1 .𝑦 − 𝑣𝑖, 𝑗−1 .𝑦

2
(5)

Then, pressure values are iteratively adjusted to minimize
divergence, enforcing incompressibility.

𝑝
(𝑘+1)
𝑖, 𝑗

=
1
𝑁

©­«
∑︁

fluid neighbors
𝑝 (𝑘 ) − ∇ · ®𝑣𝑖, 𝑗

ª®¬ (6)

where 𝑁 is the number of neighboring fluid cells.
The velocity field is updated by subtracting the pressure gra-
dient.

®𝑣𝑖, 𝑗 .𝑥 −=
𝑝𝑖+1, 𝑗 − 𝑝𝑖−1, 𝑗

2
, ®𝑣𝑖, 𝑗 .𝑦 −=

𝑝𝑖, 𝑗+1 − 𝑝𝑖, 𝑗−1
2

(7)

4. Transfer Back to Particles: Updated grid velocities are in-
terpolated back onto particles.

®𝑣𝑝 =
∑︁
(𝑖, 𝑗 )

𝑤 (𝑖, 𝑗 )→𝑝 · ®𝑣𝑖, 𝑗 (8)

5. Move Particles: Particles are advected according to their
updated velocities. Boundary conditions are enforced by
repositioning particles inside the domain and setting bound-
ary normal velocities to zero.

®𝑥𝑝 += ®𝑣𝑝 · Δ𝑡 (9)

3.4 PIC/FLIP Implementation
The PIC/FLIP hybrid method follows a similar pipeline but differs
in how particle velocities are updated:

1. Before applying gravity, the current grid velocity is stored.
2. After solving the pressure, the difference between the new

and old grid velocities is computed.
3. Particle velocities are updated using a blend of PIC and FLIP:

®𝑣𝑏𝑙𝑒𝑛𝑑𝑒𝑑𝑝 = ®𝑣𝑃𝐼𝐶𝑝 + 𝛼 (®𝑣𝑛𝑒𝑤𝑔 − ®𝑣𝑜𝑙𝑑𝑔 ) (10)

where a flip_ratio of 0 corresponds to pure PIC, and values
approaching 1 resemble FLIP.

4. Particles are then advected in the same manner as the PIC
method, including boundary handling.

3.5 APIC
To implement theAPICmethod, we aimed to simulate incompress-
ible fluid behavior with both stability and visual richness. Com-
pared to PIC or FLIP, APIC introduces an affine velocity field per
particle to better capture rotational and shear motion, which helps
reduce excessive numerical dissipation and jittering effects.

3.5.1 Algorithm The core steps of the APIC method are sum-
marized in Algorithm 2. This method extends the standard PIC
approach by introducing an affine velocity matrix for each par-
ticle, which allows capturing local rotational and shear motions
more accurately.

3.5.2 Intermediate Results and Diagrams We used the
Affine Particle-in-Cell (APIC) method to simulate fluid with im-
proved detail and stability. Each particle stores an affine veloc-
ity matrix, which allows local rotation and deformation to be pre-
served during particle-to-grid transfers.

4 Results
Table 1 shows a summary of the comparison of the five fluid sim-
ulation methods.

4.1 Grid
We evaluated the performance of the Grid method with a 50x50
grid. Figure 1 shows simulation snapshots of the grid simulation.

The grid-based method is easy to use and stable. It works well
for smooth and slow fluid motion. But it also has some limits.
Small details like sharp edges are often lost because values are
spread out too much. It can also look blurry over time. Since the
grid is fixed, it is harder to follow fast-moving or thin parts of the

3



Algorithm 2 APIC Particle Update Loop
1: for each particle 𝑝 do ⊲ Particle to Grid (P2G)
2: for each neighboring grid node 𝑔 do
3: Compute weight𝑤𝑝𝑔 and offset d = 𝑥𝑔 − 𝑥𝑝
4: Transfer velocity: 𝑣𝑔 ← 𝑣𝑔 +𝑤𝑝𝑔 · (𝑣𝑝 +𝐶𝑝 · d)
5: Transfer mass:𝑚𝑔 ←𝑚𝑔 +𝑤𝑝𝑔

6: end for
7: end for
8: for each grid node 𝑔 do ⊲ Grid Operations(Add Forces)
9: if 𝑚𝑔 > 0 then
10: Normalize: 𝑣𝑔 ←

𝑣𝑔

𝑚𝑔

11: end if
12: Apply gravity: 𝑣𝑔 ← 𝑣𝑔 + Δ𝑡 · 𝑔
13: Enforce boundary conditions on 𝑣𝑔
14: end for
15: for each particle 𝑝 do ⊲ Grid to Particle (G2P)
16: Initialize: 𝑣𝑝 ← 0, 𝐶𝑝 ← 0
17: for each neighboring grid node 𝑔 do
18: Compute weight𝑤𝑝𝑔 and offset d = 𝑥𝑔 − 𝑥𝑝
19: Interpolate velocity: 𝑣𝑝 ← 𝑣𝑝 +𝑤𝑝𝑔 · 𝑣𝑔
20: Update affine matrix: 𝐶𝑝 ← 𝐶𝑝 +𝑤𝑝𝑔 · 𝑣𝑔 ⊗ d
21: end for
22: Update position: 𝑥𝑝 ← 𝑥𝑝 + Δ𝑡 · 𝑣𝑝
23: end for

Table 1
Comparison of Fluid Simulation Methods

Method Pro Con

Grid Fast (real-time)
Unconditionally stable

Loss of detail
Not physically accurate

Particle Fast Limitation of input particle
position
Particle collapse

PIC Stable High numerical dissipa-
tion
Particles lose energy
quickly

PIC/FLIP More realistic and dynamic
motion

Less stable
Needs tuning

APIC Preserves rotation More complex
Slower

fluid. Overall, it is simple and works well for basic fluid scenes,
but not good for effects that need high detail.

4.2 Particle

Smoothed Particle Hydrodynamics (SPH) contributed to a fast and
scalable fluid simulation. The method is more intuitive, and can
be used to model free surfaces, avoiding issues that are present in
grid simulation such as grid aliasing. Compared to Stable Fluids,
SPH is less stable, and can lead to particle clumping if not stabi-
lized. When initializing the particles, the method is sensitive to
particle distribution and requires attention to tuning the smooth-

ing kernels. Figure 2 shows the SPH simulation with 400 particles.
It handles free surfaces naturally, but can become unstable and
prone to clumping over time.

4.3 PIC and PIC/FLIP
We tested both the PIC and PIC/FLIP methods with the same num-
ber of particles. Figure 3 shows how the motion is more dynamic
than pure PIC.

The PIC method loses energy fast. Particles move less and
quickly fall to the bottom. The PIC/FLIP method keeps more en-
ergy. Particles move more and look more natural.

4.4 APIC
The APIC method produced the highest visual quality among all
methods tested. By assigning each particle an affine velocity ma-
trix, APIC preserves both rotational motion and local deformation,
resulting in smooth and detailed fluid behavior. It outperforms PIC
and FLIP in maintaining coherence and reducing numerical dissi-
pation or clumping, especially at higher particle counts.

However, APIC is computationally expensive due to matrix op-
erations and additional interpolation. Performance starts to de-
grade above 10000 particles, and implementation is more complex
compared to PIC or FLIP.

We tested APIC with varying particle counts. Figure 4 shows
snapshots at 1000, 4000, and 8000 particles. As particle count in-
creases, the fluid becomes smoother and more realistic. The affine
velocity transfer helps preserve structure during motion and re-
duces artificial viscosity commonly seen in simpler methods.

5 Conclusion
Through this project, we gained hands-on experience implement-
ing a variety of fluid simulation methods, including particle-based
(SPH), grid-based (Stable Fluids), and hybrid approaches (PIC,
FLIP, and APIC). We deepened our understanding of pressure pro-
jection, velocity interpolation, particle-grid transfers, and fluid be-
havior visualization. On the implementation side, we learned to
work with OpenGL and GLUT for real-time rendering, and used
the Eigen library for efficient linear algebra operations. We also
practiced debugging and tuning numerical simulations, and man-
aging complexity within a modular C++ codebase.

Team Contributions Xu Chen was responsible for the
OpenGL-based visualization system and implemented the APIC
method. Yumeng He contributed to both the particle system and
grid-based simulation components. Irene Li worked on particle
and grid simulations. Yuchen Chen implemented the PIC and FLIP
methods and also contributed to grid development.

Future Work This project has sparked our interest in com-
puter graphics and physically based animation. In the future, we
hope to explore more advanced topics such as 3D fluid simulation,
GPU acceleration, and real-time rendering techniques.

Acknowledgements
This project received support during the CSCI580 course, in-
structed by Professor Carter Slocum at the University of Southern
California, USA.

4



(a) initialization (b) first stage (c) second stage (d) third stage

Figure 1. Stages of Stable Fluids simulation (a) shows the initial grid configuration (b)–(d) show different stages of the simulation

(a) initialization (b) first stage (c) second stage (d) third stage

Figure 2. Stages of Smoothed Particle Hydrodynamics simulation with 400 particles. (a) shows the initial particle configuration. (b)–(d) show the fluid
evolution over time. SPH handles free-surface motion intuitively, but stability decreases compared to grid-based methods.

References
Bardenhagen, SG, JU Brackbill, and Deborah Sulsky (2000). “The material-point
method for granular materials”. In: Computer methods in applied mechanics and engi-
neering 187.3-4, pp. 529–541.

Brackbill, Jeremiah U, Douglas B Kothe, and Hans M Ruppel (1988). “FLIP: a low-
dissipation, particle-in-cell method for fluid flow”. In: Computer Physics Communica-
tions 48.1, pp. 25–38.

Feng, Fan et al. (2022). “Impulse fluid simulation”. In: IEEE Transactions on Visualiza-
tion and Computer Graphics 29.6, pp. 3081–3092.

Fu, Chuyuan et al. (2017). “A polynomial particle-in-cell method”. In: ACM Transac-
tions on Graphics (TOG) 36.6, pp. 1–12.

Hu, Yuanming et al. (2018). “A moving least squares material point method with dis-
placement discontinuity and two-way rigid body coupling”. In: ACM Transactions on
Graphics (TOG) 37.4, pp. 1–14.

Jiang, Chenfanfu et al. (2015). “The affine particle-in-cell method”. In: ACM Transac-
tions on Graphics (TOG) 34.4, pp. 1–10.

Monaghan, Joe J (1992). “Smoothed particle hydrodynamics”. In: In: Annual review of
astronomy and astrophysics. Vol. 30 (A93-25826 09-90), p. 543-574. 30, pp. 543–574.

Stam, Jos (2023). “Stable fluids”. In: Seminal Graphics Papers: Pushing the Boundaries,
Volume 2, pp. 779–786.

Tskhakaya, David et al. (2007). “The particle-in-cell method”. In: Contributions to
Plasma Physics 47.8-9, pp. 563–594.

5



(a) PIC result: motion is more
damped.

(b) PIC/FLIP result: motion is
more dynamic.

(c) Grid velocities of PIC/FLIP

Figure 3. Final particle positions using PIC and PIC/FLIP. Both start from the same initial state, but show different behavior due to how velocity is
transferred.

(a) 1000 initial particles (b) 1000 particles (c) 4000 particles (d) 8000 particles

Figure 4. Comparison of APIC simulation results with increasing particle counts. (a) shows the initial particle configuration, where all particles are placed
in the center of the domain. (b)–(d) show the simulation at the moment particles start to fall under gravity.

6


	Introduction
	Contribution

	Background
	Grid-based (Stable Fluids)
	Particle-based (SPH)
	Hybrid Methods

	Methods
	Grid
	Particle
	Algorithm

	PIC
	PIC/FLIP Implementation
	APIC
	Algorithm
	Intermediate Results and Diagrams


	Results
	Grid
	Particle
	PIC and PIC/FLIP
	APIC

	Conclusion

