
CSCI580 Final Project Report
Yumeng He Hsin Li Yuchen Chen Xu Chen

heyumeng@usc.edu hsinli@usc.edu ychen581@usc.edu xchen659@usc.edu

Introduction
We implemented a 2D incompressible fluid simulation using C++ and OpenGL .
Our goal is to compare different simulation methods:
- Grid (Stable Fluids Method)
- Particle (Smoothed Particle Hydrodynamics)
- Particle-In-Cell (PIC)
- Affine Particle-In-Cell (APIC).

Visualization will leverage OpenGL with GLUT.

Render

GL_QUADS: grayscale rectangles
based on density
GL_POINTS: smooth points
glutSwapBuffers, idle callback:
real-time simulation and rendering

Fluid Methods

Equations
Navier-Stokes Equations for the velocity:

The equation for a density moving through the velocity field:

Grid - Stable Fluids Method
[Add Source] → [Diffuse] → [Project] → [Advect]

Step Purpose

Add Source Injects new momentum or density

Diffuse Models viscosity and spreading

Project Enforces incompressibility

Advect Moves material/velocity with flow

Grid - Stable Fluids Method
[Add Source] → [Diffuse] → [Project] → [Advect]

Step Purpose

Add Source Injects new momentum or density

Diffuse Models viscosity and spreading

Project Enforces incompressibility

Advect Moves material/velocity with flow

Particle - Smoothed Particle Hydrodynamics
1. ComputeDensityPressure()

accumulate density of neighboring
particles and calculate pressure

2. ComputeForces():
a. pressure: direction along the vector

connecting particles
b. viscosity: direction relative to

velocity
c. gravity

3. Integrate(): for each particle update
velocity and position

Particle in cell (PIC)
1. particle_to_grid(): Transfer

velocity/mass to grid (B-Spline weights)
2. apply_grid_forces(): Apply gravity
3. project_pressure(): Solve Poisson

equation
4. grid_to_particle(): Interpolate grid

velocity back to particles
5. advect_particles(): Move particles and

enforce boundaries

PIC/FLIP

• Implemented FLIP and PIC blending to
improve particle behavior

• Set FLIP_RATIO = 0.96

Affine Particle in cell (APIC)

● particle_to_grid_apic() : Transfer affine
velocity v = vₚ + B × (xg - xp)

● apply_grid_forces()
● project_pressure()
● grid_to_particle_apic() : Interpolate velocity

and update B
● advect_particles()

Comparison
Pro Con

Grid (Stable Fluids) - Fast (real time)
- Unconditionally stable

- Loss of detail
- Not physically accurate

Particle (Smoothed
Particle
Hydrodynamics)

- Fast - Limitation of input particle
position

- Particle collapse

Particle in cell (PIC) - stable - High numerical dissipation
- Particles lose energy quickly

PIC/FLIP - More realistic and dynamic
motion

- Less stable
- needs tuning

APIC - Preserves rotation - More complex
- slower

Thank you
References
Stam, J. & Alias wavefront. (1999b). Stable fluids. In Alias Wavefront (p. 121) [Journal-article]. Alias wavefront.
https://pages.cs.wisc.edu/~chaol/data/cs777/stam-stable_fluids.pdf

Stam, J. (2003, March). Real-time fluid dynamics for games. In Proceedings of the game developer conference (Vol. 18,
No. 11). https://graphics.cs.cmu.edu/nsp/course/15-464/Fall09/papers/StamFluidforGames.pdf

Müller, M., Dorsey, J., McMillan, L., Jagnow, R., & Cutler, B. (2003). Stable Real-Time Deformations. In Eurographics/ACM
SIGGRAPH Symposium on Computer Animation (p. 49–54) [Conference paper]. Eurographics Association.
https://matthias-research.github.io/pages/publications/sca03.pdf

Robert Bridson. (2015). Fluid Simulation for Computer Graphics (2nd ed., Chapter 7.6). CRC Press. [Book].

Jiang, C., Schroeder, C., Selle, A., Teran, J., & Stomakhin, A. (2015). The affine particle-in-cell method. ACM Transactions
on Graphics, 34(4), Article 51. https://doi.org/10.1145/2766996

https://pages.cs.wisc.edu/~chaol/data/cs777/stam-stable_fluids.pdf
https://graphics.cs.cmu.edu/nsp/course/15-464/Fall09/papers/StamFluidforGames.pdf
https://matthias-research.github.io/pages/publications/sca03.pdf
https://doi.org/10.1145/2766996

Appendix I: APIC formula

