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Introduction
We implemented a 2D incompressible fluid simulation using C++ and OpenGL . 
Our goal is to compare different simulation methods: 
- Grid (Stable Fluids Method)
- Particle (Smoothed Particle Hydrodynamics)
- Particle-In-Cell (PIC)
- Affine Particle-In-Cell (APIC). 

Visualization will leverage OpenGL with GLUT.



Render

GL_QUADS: grayscale rectangles 
based on density
GL_POINTS: smooth points
glutSwapBuffers, idle callback: 
real-time simulation and rendering
 



Fluid Methods



Equations
Navier-Stokes Equations for the velocity:

The equation for a density moving through the velocity field:



Grid - Stable Fluids Method
[Add Source] → [Diffuse] → [Project] → [Advect]

Step Purpose

Add Source Injects new momentum or density

Diffuse Models viscosity and spreading

Project Enforces incompressibility

Advect Moves material/velocity with flow
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Particle - Smoothed Particle Hydrodynamics
1. ComputeDensityPressure()  

accumulate density of neighboring 
particles and calculate pressure

2. ComputeForces():  
a. pressure: direction along the vector 

connecting particles
b. viscosity: direction relative to 

velocity
c. gravity

3. Integrate(): for each particle update 
velocity and position



Particle in cell (PIC)
1. particle_to_grid():  Transfer 

velocity/mass to grid (B-Spline weights)
2. apply_grid_forces():  Apply gravity
3. project_pressure(): Solve Poisson 

equation
4. grid_to_particle(): Interpolate grid 

velocity back to particles
5. advect_particles(): Move particles and 

enforce boundaries



PIC/FLIP

• Implemented FLIP and PIC blending to 
improve particle behavior

• Set FLIP_RATIO = 0.96



Affine Particle in cell (APIC)

● particle_to_grid_apic() : Transfer affine 
velocity v = vₚ + B × (xg - xp) 

● apply_grid_forces()
● project_pressure()
● grid_to_particle_apic() : Interpolate velocity 

and update B
● advect_particles()



Comparison
Pro Con

Grid (Stable Fluids) - Fast (real time)
- Unconditionally stable

- Loss of detail
- Not physically accurate

Particle (Smoothed 
Particle 
Hydrodynamics)

- Fast - Limitation of input particle 
position

- Particle collapse

Particle in cell (PIC) - stable - High numerical dissipation
- Particles lose energy quickly

PIC/FLIP - More realistic and dynamic 
motion

- Less stable
-  needs tuning

APIC - Preserves rotation - More complex
- slower
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Appendix I: APIC formula


