CSCI580 Final Project Report

Yumeng He Hsin Li Yuchen Chen Xu Chen
heyumeng@usc.edu hsinli@usc.edu ychen581@usc.edu xchen659@usc.edu

Introduction

We implemented a 2D incompressible fluid simulation using C++ and OpenGL.
Our goal is to compare different simulation methods:

- Grid (Stable Fluids Method)

- Particle (Smoothed Particle Hydrodynamics)

- Particle-In-Cell (PIC)

- Affine Particle-In-Cell (APIC).

Visualization will leverage OpenGL with GLUT.

Render

main.cpp
fileGenerator.cpp ——> |- Load input data (.grid, .par, .pic, .apic) Simulation modules
e .grid - Initialize OpenGL context grid.cpp

- Initialize grid(w, h, v_x, v_y...) - Initialize simulation based on data type | &—— ;

e ; article.c
- |nitialize part|c|e()(' y) H - Set up rendering |00p (GLUT) p|c CI; £
- Initialize pic(dt, x_num, y_num pecp
- Initialize apic(dt, x, y...) aRietob

b .par
l render
'pic 2D OpenGL Fluid Framework

GL_QUADS: grayscale rectangles
based on density

GL_POINTS: smooth points
glutSwapBuffers, idle callback:
real-time simulation and rendering

.apic

(Offline generated files)

Fluid Methods

Fluid Simulation (2

Lagrangian (particle based)

Eulerian (grid based)

Hybrid

____ Smoothed Particle Hydrodynamics
(SPH)

—— Stable Fluids Method @z

— particle-in-cell (PIC)

fluid implicit
[particle (FLIP)

,— Material Point Method (MPM)

N~ Polynomial Particle-In-Cell (PolyPIC)

_ Moving Least Squares Material
Point Method (MLS-MPM)

- Impulse Particle-In-Cell Method (&4

N\~ Affine Particle-In-Cell (APIC) method 2 —

only the momentum term
is transferred between P and G

transfer the differential of momentum to

—— obtain better dynamic effects at the cost of

stability

adds a new dimension to fluid simulation

by considering the deformation gradient
information along with the momentum term,
making it suitable for simulating a wide range
of materials, including fluids, granular
materials, and deformable solids

incorporate affine velocity fields

incorporate higher-order polynomial velocity
fields

utilize moving least squares for grid
interpolation and differentiation in

MPM simulations, further enhancing the
accuracy and robustness of the approach

make use of the impulse gauge formulation of
the fluid equations.

Equations

Navier-Stokes Equations for the velocity:

0
8—1;: —(u-V)u+vViu+f

The equation for a density moving through the velocity field:

0
8—'::—(u-V)p+/<;V2p+S

Grid - Stable Fluids Method

Step

Add Source
Diffuse
Project

Advect

|Add Source] — |Diffuse| — [Project] — [Advect]

Purpose

Injects new momentum or density
Models viscosity and spreading
Enforces incompressibility

Moves material /velocity with flow

Grid - Stable Fluids Method

Step

Add Source
Diffuse
Project

Advect

|Add Source] — |Diffuse| — [Project] — [Advect]

Purpose

Injects new momentum or density
Models viscosity and spreading
Enforces incompressibility

Moves material /velocity with flow

1.

ComputeDensityPressure()

accumulate density of neighboring

particles and calculate pressure

ComputeForces():

a. pressure: direction along the vector
connecting particles

b. viscosity: direction relative to
velocity

C. gravity

Integrate(): for each particle update

velocity and position

Particle in cell (PIC)

particle_to_grid(): Transfer
velocity/mass to grid (B-Spline weights)
apply_grid_forces(): Apply gravity
project_pressure(): Solve Poisson
equation

grid_to_particle(): Interpolate grid
velocity back to particles
advect_particles(): Move particles and
enforce boundaries

PIC/FLIP

Vec2 flip_delta = new_vel - old_vel; ge in grid velocity (FLIP update term)
p.vel = p.vel + flip_delta * FLIP_ RATIO + new_vel % (1,0f - FLIP_RATIO);

void step() @
particle_to_grid();
grid.velocity_old = grid.velocity; // here ! !
apply_grid_forces();
project_pressure(

’

(
)
grid_to_particle();

advect_particles();

e Implemented FLIP and PIC blending to
improve particle behavior

e Set FLIP_RATIO = 0.96

Affine Particle in cell (APIC)

e particle_to_grid_apic() : Transfer affine
velocity v=v[] + B X (xg - xp)

e apply_grid_forces()

e project_pressure()

e grid_to_particle_apic() :Interpolate velocity
and update B

e advect_particles()

Comparison

Grid (Stable Fluids)

Particle (Smoothed
Particle
Hydrodynamics)

Particle in cell (PIC)

PIC/FLIP

APIC

Pro

Fast (real time)
Unconditionally stable

Fast

stable

More realistic and dynamic
motion

Preserves rotation

Con

Loss of detail
Not physically accurate

Limitation of input particle
position
Particle collapse

High numerical dissipation
Particles lose energy quickly

Less stable
needs tuning

More complex
slower

Thank you

References
Stam, J. & Alias wavefront. (1999b). Stable fluids. In Alias Wavefront (p. 121) [Journal-article]. Alias wavefront.
https://pages.cs.wisc.edu/~chaol/data/cs777/stam-stable fluids.pdf

Stam, J. (2003, March). Real-time fluid dynamics for games. In Proceedings of the game developer conference (Vol. 18,
No. 11). https://graphics.cs.cmu.edu/nsp/course/15-464/Fall09 /papers/StamFluidforGames.pdf

Miiller, M., Dorsey,]., McMillan, L., Jagnow, R., & Cutler, B. (2003). Stable Real-Time Deformations. In Eurographics/ACM
SIGGRAPH Symposium on Computer Animation (p. 49-54) [Conference paper]. Eurographics Association.
https://matthias-research.github.io/pages/publications/sca03.pdf

Robert Bridson. (2015). Fluid Simulation for Computer Graphics (2nd ed., Chapter 7.6). CRC Press. [BooK].

Jiang, C., Schroeder, C., Selle, A., Teran, J., & Stomakhin, A. (2015). The affine particle-in-cell method. ACM Transactions
on Graphics, 34(4), Article 51. https://doi.org/10.1145/2766996

https://pages.cs.wisc.edu/~chaol/data/cs777/stam-stable_fluids.pdf
https://graphics.cs.cmu.edu/nsp/course/15-464/Fall09/papers/StamFluidforGames.pdf
https://matthias-research.github.io/pages/publications/sca03.pdf
https://doi.org/10.1145/2766996

Appendix I: APIC formula

mivy =Y wimp(vy + By (Dy) 7 (x: — x3)), (8)

P
where C = B7 (D7)~ " and D}, is analogous to an inertia tensor.
D, is given by

Dy =) wip(x:i — Xp)(%i —Xp)" ©)

and 1s derived by preserving affine motion during the transfers. The
corresponding transfer from the grid back to particles is

By =) wihvi (i —xp) (10)

1

