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Abstract

Vanilla Vision Language Action model predicts robot actions by discretizing each action dimen-
sion into fixed tokens and training with next-token prediction. This fits language modeling, but
introduces quantization error, jittery control, and vocabulary limits. We propose a continuous-
action alternative that keeps the existing vision language backbone and replaces the tokenized
action head with the following: (i) a direct regression head that transforms a learned action query
into normalized continuous actions using a small MLP, optimized with MSE, RMSE, MAE, or
Huber loss, and (ii) a logit-weighted expectation head that predicts a distribution over K anchor
values per dimension and converts it to a single value via a probability-weighted average. Both
avoid token overwrites and support parameter-efficient fine-tuning. We will conduct evaluation
on our own benchmark, repeatable long-horizon trials in RobotTwin [Mu et al., 2025b], and com-
parisons on the LIBERO [Liu et al., 2023a] robot manipulation benchmark. Metrics include task
success, trajectory smoothness, long-horizon stability, data efficiency, and inference latency, with
ablations on losses, normalization, and history conditioning and comparisons to numeric embed-
dings such as xVal [Golkar et al., 2023] and FoNE [Zhou et al., 2025a]. The study is designed
to test whether continuous outputs reduce quantization artifacts and match or exceed the success
rate of the vanilla VLA under equal compute.

1 Introduction

Motivation. The current OpenVLA pipeline discretizes each action dimension into 256 bins and
maps them to tokens for prediction by the LLM backbone [Kim et al., 2024]. While this allows
integration with the tokenizer, it introduces quantization error and limits precision: subtle differences
in continuous actions are collapsed into the same bin. Furthermore, the Llama tokenizer only reserves
100 special tokens, forcing OpenVLA to overwrite 256 rare tokens with action tokens, which can
interfere with language modeling.

Other numerical embedding methods, such as xVal [Golkar et al., 2023] and Abacus embeddings
[McLeish et al., 2024], also rely on discretization or digit-wise decomposition. These methods are
effective in arithmetic reasoning benchmarks but are suboptimal for robotic control, where smooth
and high-resolution action prediction is critical.

Proposed Alternatives. We replace bin-based discretization with regression-style formulations that
produce continuous values:
1. Direct Regression. Each action dimension is predicted as a scalar, optimized with root mean

squared error (RMSE): Lruvse = \/ + SN (a; — @;)2, where a; is the ground-truth action and

i=1

a; is the model prediction.

2. Logit-Weighted Expectation. Define a discrete set of anchor values {v1, ..., vk } and interpret
output logits as probabilities. The predicted action is the expectation: a = Zfil Pi- Vi, Di =
%, where z; are the logits. The training objective combines MSE on & with entropy

i=1
regularization.



Expected Benefits.
e Higher Precision: Removes coarse quantization for smoother trajectories.
e Reduced Token Overhead: Eliminates the need to overwrite rare tokens.
e Improved Generalization: Continuous regression captures diverse action distributions.

e Compatibility: The logit-weighted method maintains token alignment with the LLM backbone.

Implementation Plan. We will replace the action-tokenization module with either a regression
head or a logit-weighted expectation layer, and compare three variants: (1) baseline binning, (2) direct
regression, and (3) logit-weighted expectation (4) Abacus (5)xVAL , etc. Evaluation metrics include
task success rate, smoothness of control (variance of consecutive deltas), and training stability.

2 Related Work

Vision-Language Models (VLMs). Modern VLMs learn transferable multimodal representations
from web-scale image—text pairs and can be adapted to a broad set of downstream tasks. CLIP estab-
lished scalable contrastive pretraining for zero-shot transfer [Radford et al., 2021]; Flamingo introduced
an interleaved vision—text architecture that supports in-context few-shot learning [Alayrac et al., 2022];
BLIP-2 bridged frozen vision encoders and LLMs using a lightweight querying transformer [Li et al.,
2023]; and LLaVA demonstrated visual instruction tuning for multimodal assistants [Liu et al., 2023c].
These VLMs are frequently used as backbones or initializations for robotic-oriented VLAs.

Vision-Language Action (VLAs). Recent VLAs unify visual perception and language ground-
ing to directly output robot actions, enabling end-to-end manipulation from instruction to control.
OpenVLA provides an open 7B baseline trained on ~ 970k episodes from the Open X-Embodiment
(OXE) corpus, facilitating cross-embodiment transfer and parameter-efficient adaptation [Collabora-
tion, 2023]. SmolVLA explores the complementary direction of compact, resource-friendly VLAs with
competitive performance [Shukor et al., 2025].

Extensions to VLAs. Beyond vanilla tokenized actions, Optimized Fine-Tuning (OFT) combines
parallel decoding, action chunking, and continuous action regression with a simple L1 objective, yield-
ing large speedups and higher success on LIBERO; real-robot, bimanual evaluations further show gains
over from-scratch policies [Kim et al., 2025]. These results motivate hybrid or continuous action heads
that reduce quantization error and enable higher control rates as a principled alternative to purely
discrete tokenization.

Benchmarks. For language-conditioned manipulation, LIBERO offers 130 procedurally generated
tasks across four suites and has become a de-facto standard for VLA fine-tuning and generalization
[Liu et al., 2023b]. Complementing this, the dual-arm RoboTwin & RoboTwin 2.0 provides a scal-
able, domain-randomized bimanual benchmark (50 tasks, 731 objects) with a generative digital-twin
pipeline [Mu et al., 2025a, Chen et al., 2025]. Beyond these, VIMA-Bench [Jiang et al., 2022], RL-
Bench [James et al., 2019], CALVIN [Mees et al., 2021], and ManiSkill3 [Tao et al., 2024] support
simulator-style online evaluation, while OXE [Collaboration, 2023] and BridgeData V2 [Walke et al.,
2023] offer large-scale offline real-robot distributions.

3 Proposed Method and Pipeline

Overview. We propose a regression-oriented reformulation of the action decoding stage in OpenVLA.
Instead of discretizing each action dimension into 256 bins, we explore continuous prediction heads
that improve precision and smoothness of control. Specifically, we compare three alternatives—zVal
embeddings, logit-weighted sum, and direct regression—with an optional enhancement using Fourier
Number Embeddings (FoNE). Our pipeline minimally modifies the architecture: only the decoding
head is replaced, followed by lightweight finetuning of the model.



Action Decoding Alternatives. We design and evaluate the following decoding strategies:

1. xVal. Following [Golkar et al., 2023], each number n is represented as the elementwise product
of its embedding and its numerical value. For action prediction, the LLM outputs a represen-
tation that directly scales with the action value, bridging embedding-based representations and
continuous outputs.

2. Logit-Weighted Sum. Define a fixed set of anchor values {vq,...,vx} for each action di-
mension. The model produces logits {z;}, normalized into probabilities p; = softmax(z;). The
predicted action is the expectation:

K
a=>» pi-v.
i=1

This approach retains a token-like discrete structure while outputting continuous values, and can
be regularized with entropy terms for sharper predictions.

3. Direct Regression. A lightweight MLP regression head maps the hidden states of the LLM to
continuous scalars. Training minimizes root mean squared error (RMSE):

N
% (CLZ' — CAlZ)2
i=1

LRMSE =

4. FoONE-Enhanced Regression (Optional). To further improve precision, we replace raw
scalars with Fourier Number Embeddings [Zhou et al., 2025b]. The regression head outputs
a Fourier-encoded representation, which is decoded back into scalars, allowing smoother extrap-
olation and better generalization.

Pipeline. Our proposed pipeline consists of four stages:

1. Input Encoding: Task instructions and observations are encoded into hidden representations
via a pretrained multimodal backbone.

2. Backbone Processing: A Llama-based decoder integrates contextual and multimodal infor-
mation.

3. Action Decoding Head: Instead of a discretization-based action tokenizer, one of the proposed
heads (xVal, logit-weighted sum, regression, or FoNE-enhanced regression) predicts continuous
actions.

4. Finetuning: We finetune the new decoding head and optionally the final transformer block on
paired (instruction, observation, action) data, keeping most of the backbone frozen.

Evaluation Plan. We will compare the following decoding strategies: (1) baseline 256-bin dis-
cretization, (2) xVal, (3) logit-weighted sum, (4) direct regression, and (5) FoNE-enhanced regression.
Metrics include task success rate, smoothness of action trajectories (variance of consecutive deltas),
training stability, and vocabulary/token efficiency.

4 Experiment

4.1 Benchmark design

To evaluate continuous-action VLA models, we will develop a benchmark focused on multi-step ma-
nipulation tasks. Experiments will be conducted in the RobotTwin simulator [Mu et al., 2025b], which
enables repeatable execution of robot trajectories with precise logging of control smoothness, failure
points, and recovery attempts. We will additionally compare against the LIBERO benchmark suite
[Liu et al., 2023a], a widely used evaluation framework for manipulation tasks with natural language
instructions. Benchmark metrics will include task success rate, trajectory smoothness, long-horizon



stability, data efficiency, inference latency, and safety violations (e.g., collisions or excessive forces).
By incorporating both simulation and real-world grounded datasets, the benchmark will measure not
only accuracy but also deployability under realistic robotic constraints.

We will test on different loss functions (ways the model measures and learns from its errors, such
as MSE, RMSE, MAE, or Huber), normalization strategies (how we scale or adjust the action val-
ues), and history conditioning (how much of the past sequence of actions the model considers), along
with comparisons to recent numeric embedding methods such as xVal [Golkar et al., 2023] and FoNE
[Zhou et al., 2025a]. These experiments will help us understand whether continuous-action models
can actually perform better than token-based models when both use the same amount of compute and
data.

4.2 Application to robotics

Beyond controlled benchmarks in simulated environments, we will also test the continuous-action VLA
models for robotic manipulation in real-world environments. By eliminating discretization artifacts,
we hope these models can generate smoother, safer, and more efficient trajectories, which can benefit
applications such as manufacturing, household assistance, and medical robotics, where precision and
safety are critical. The proposed heads should also support parameter fine-tuning, making them prac-
tical for adapting pretrained VLA models to specific datasets with limited additional supervision.

For the evaluation in simulations, we will use RobotTwin [Mu et al., 2025b] for long-horizon repro-
ducibility and LIBERO [Liu et al., 2023a] as a standardized manipulation dataset, while for real-world
environment, we will use the same datasets for the simulated environment with paired robot demon-
strations. The real-world evaluation will also be assessed using the same measures of task success
rate, trajectory efficiency, latency, and safety. Our approach aims to close the gap between language
reasoning and the fine-grained motor control required for real-world robotic autonomy.

5 Work Assignment

1. Benchmark Design: Yumeng He, Phillip Huang, Junyi Ouyang

2. Training Strategy: Peilin Cai, Tianyi Zhou, Siliang Zhang

3. Application to Robotics: Yumeng He, Phillip Huang, Junyi Ouyang, Peilin Cai, Tianyi Zhou,
Siliang Zhang
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